中文版 | English
题名

GGuard: Enabling Leakage-Resilient Memory Isolation in GPU-accelerated Autonomous Embedded Systems

作者
DOI
发表日期
2021-12-05
会议名称
58th ACM/IEEE Design Automation Conference (DAC)
ISSN
0738-100X
ISBN
978-1-6654-3275-7
会议录名称
卷号
2021-December
页码
817-822
会议日期
DEC 05-09, 2021
会议地点
null,San Francisco,CA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Graphics processing units (GPUs) are being widely used as co-processors for performance acceleration in many autonomous embedded systems such as robotics and autonomous vehicles. However, current GPU hardware and systems software, including GPU device drivers, compilers, and operating systems, do not implement proper memory protection mechanisms due to performance and proprietary reasons, causing severe vulnerabilities such as information leakage. In this paper, we present gGuard, a leakage-resilient GPU memory management system with strong isolation. Based on the intrinsic characteristics of information leakage vulnerabilities on GPUs, gGuard develops a set of efficient and accurate data shredding techniques implemented at the compiler, library, and operating system levels, with the core idea of exploring the data access patterns and dependencies for efficient application-aware data shredding. Our implementation and evaluation show that gGuard can provide effective mitigation on GPU data leakage issues through efficient GPU data shredding while introducing less than 6% overhead in all tested scenarios.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic
WOS记录号
WOS:000766079700137
EI入藏号
20214711206212
EI主题词
Computer graphics ; Computer hardware ; Embedded systems ; Graphics processing unit
EI分类号
Semiconductor Devices and Integrated Circuits:714.2 ; Computer Circuits:721.3 ; Computer Systems and Equipment:722 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85119401657
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9586244
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256856
专题工学院_计算机科学与工程系
作者单位
1.The University of Texas at Dallas,Department of Computer Science,Richardson,United States
2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
推荐引用方式
GB/T 7714
Yadlapalli,Yaswanth,Zhou,Husheng,Zhang,Yuqun,et al. GGuard: Enabling Leakage-Resilient Memory Isolation in GPU-accelerated Autonomous Embedded Systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:817-822.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
gGuard_Enabling_Leak(343KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yadlapalli,Yaswanth]的文章
[Zhou,Husheng]的文章
[Zhang,Yuqun]的文章
百度学术
百度学术中相似的文章
[Yadlapalli,Yaswanth]的文章
[Zhou,Husheng]的文章
[Zhang,Yuqun]的文章
必应学术
必应学术中相似的文章
[Yadlapalli,Yaswanth]的文章
[Zhou,Husheng]的文章
[Zhang,Yuqun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。