题名 | GGuard: Enabling Leakage-Resilient Memory Isolation in GPU-accelerated Autonomous Embedded Systems |
作者 | |
DOI | |
发表日期 | 2021-12-05
|
会议名称 | 58th ACM/IEEE Design Automation Conference (DAC)
|
ISSN | 0738-100X
|
ISBN | 978-1-6654-3275-7
|
会议录名称 | |
卷号 | 2021-December
|
页码 | 817-822
|
会议日期 | DEC 05-09, 2021
|
会议地点 | null,San Francisco,CA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Graphics processing units (GPUs) are being widely used as co-processors for performance acceleration in many autonomous embedded systems such as robotics and autonomous vehicles. However, current GPU hardware and systems software, including GPU device drivers, compilers, and operating systems, do not implement proper memory protection mechanisms due to performance and proprietary reasons, causing severe vulnerabilities such as information leakage. In this paper, we present gGuard, a leakage-resilient GPU memory management system with strong isolation. Based on the intrinsic characteristics of information leakage vulnerabilities on GPUs, gGuard develops a set of efficient and accurate data shredding techniques implemented at the compiler, library, and operating system levels, with the core idea of exploring the data access patterns and dependencies for efficient application-aware data shredding. Our implementation and evaluation show that gGuard can provide effective mitigation on GPU data leakage issues through efficient GPU data shredding while introducing less than 6% overhead in all tested scenarios. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Hardware & Architecture
; Computer Science, Software Engineering
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000766079700137
|
EI入藏号 | 20214711206212
|
EI主题词 | Computer graphics
; Computer hardware
; Embedded systems
; Graphics processing unit
|
EI分类号 | Semiconductor Devices and Integrated Circuits:714.2
; Computer Circuits:721.3
; Computer Systems and Equipment:722
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85119401657
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9586244 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256856 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.The University of Texas at Dallas,Department of Computer Science,Richardson,United States 2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Yadlapalli,Yaswanth,Zhou,Husheng,Zhang,Yuqun,et al. GGuard: Enabling Leakage-Resilient Memory Isolation in GPU-accelerated Autonomous Embedded Systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:817-822.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
gGuard_Enabling_Leak(343KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论