中文版 | English
题名

Camera-Agnostic Person Re-Identification via Adversarial Disentangling Learning

作者
通讯作者Song,Jingkuan
DOI
发表日期
2021-10-17
会议录名称
页码
2002-2010
摘要
Despite the success of single-domain person re-identification (ReID), current supervised models degrade dramatically when deployed to unseen domains, mainly due to the discrepancy across cameras. To tackle this issue, we propose an Adversarial Disentangling Learning (ADL) framework to decouple camera-related and ID-related features, which can be readily used for camera-agnostic person ReID. ADL adopts a discriminative way instead of the mainstream generative styles in disentangling methods, eg., GAN or VAE based, because for person ReID task only the information to discriminate IDs is needed, and more information to generate images are redundant and may be noisy. Specifically, our model involves a feature separation module that encodes images into two separate feature spaces and a disentangled feature learning module that performs adversarial training to minimize mutual information. We design an effective solution to approximate and minimize mutual information by transforming it into a discrimination problem. The two modules are co-designed to obtain strong generalization ability by only using source dataset. Extensive experiments on three public benchmarks show that our method outperforms the state-of-the-art generalizable person ReID model by a large margin. Our code is publicly available at https://github.com/luckyaci/ADL_ReID.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214711200008
EI主题词
Computer vision
EI分类号
Computer Applications:723.5 ; Vision:741.2 ; Photographic Equipment:742.2
Scopus记录号
2-s2.0-85119347886
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256875
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Electronic Science and Technology of China,Chengdu,China
2.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Ni,Hao,Song,Jingkuan,Zhu,Xiaosu,et al. Camera-Agnostic Person Re-Identification via Adversarial Disentangling Learning[C],2021:2002-2010.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ni,Hao]的文章
[Song,Jingkuan]的文章
[Zhu,Xiaosu]的文章
百度学术
百度学术中相似的文章
[Ni,Hao]的文章
[Song,Jingkuan]的文章
[Zhu,Xiaosu]的文章
必应学术
必应学术中相似的文章
[Ni,Hao]的文章
[Song,Jingkuan]的文章
[Zhu,Xiaosu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。