中文版 | English
题名

A Physics-Informed Neural Network for RRAM modeling

作者
DOI
发表日期
2021-07-28
ISBN
978-1-6654-3377-8
会议录名称
页码
1-2
会议日期
28-31 July 2021
会议地点
Chengdu, China
摘要
Modeling of RRAM devices has been challenging due to the existence of the flux-dependent internal variables. Extra differential equations or capacitive circuits are often needed to model the evolution of the internal state variable and its impacts on the device responses, rendering the RRAM model difficult to develop and slow to evaluate. In this work, we propose a simple yet viable alternative to build steady-state RRAM compact models using physics-informed neural networks that do not involve internal state components. The central idea is to utilize a sequence of currents that are generated before as inputs, to account for the effect of the flux history that affects the current under the present voltage. The accuracy of the proposed model is applied to and verified by experimentally measured data.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214711198869
EI主题词
Computational electromagnetics ; Differential equations
EI分类号
Electricity and Magnetism:701 ; Data Storage, Equipment and Techniques:722.1 ; Calculus:921.2 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85119371620
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9581858
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256885
专题工学院_深港微电子学院
作者单位
School of Microelectronics,Southern University of Science and Technology,China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Sha,Yanliang,Ouyang,Lingyun,Chen,Quan. A Physics-Informed Neural Network for RRAM modeling[C],2021:1-2.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sha,Yanliang]的文章
[Ouyang,Lingyun]的文章
[Chen,Quan]的文章
百度学术
百度学术中相似的文章
[Sha,Yanliang]的文章
[Ouyang,Lingyun]的文章
[Chen,Quan]的文章
必应学术
必应学术中相似的文章
[Sha,Yanliang]的文章
[Ouyang,Lingyun]的文章
[Chen,Quan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。