题名 | A Physics-Informed Neural Network for RRAM modeling |
作者 | |
DOI | |
发表日期 | 2021-07-28
|
ISBN | 978-1-6654-3377-8
|
会议录名称 | |
页码 | 1-2
|
会议日期 | 28-31 July 2021
|
会议地点 | Chengdu, China
|
摘要 | Modeling of RRAM devices has been challenging due to the existence of the flux-dependent internal variables. Extra differential equations or capacitive circuits are often needed to model the evolution of the internal state variable and its impacts on the device responses, rendering the RRAM model difficult to develop and slow to evaluate. In this work, we propose a simple yet viable alternative to build steady-state RRAM compact models using physics-informed neural networks that do not involve internal state components. The central idea is to utilize a sequence of currents that are generated before as inputs, to account for the effect of the flux history that affects the current under the present voltage. The accuracy of the proposed model is applied to and verified by experimentally measured data. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20214711198869
|
EI主题词 | Computational electromagnetics
; Differential equations
|
EI分类号 | Electricity and Magnetism:701
; Data Storage, Equipment and Techniques:722.1
; Calculus:921.2
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85119371620
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9581858 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256885 |
专题 | 工学院_深港微电子学院 |
作者单位 | School of Microelectronics,Southern University of Science and Technology,China |
第一作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Sha,Yanliang,Ouyang,Lingyun,Chen,Quan. A Physics-Informed Neural Network for RRAM modeling[C],2021:1-2.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论