题名 | Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning |
作者 | |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 1041-4347
|
EISSN | 1558-2191
|
卷号 | PP期号:99页码:1-1 |
摘要 | Estimation of road link travel time serves a critical role in intelligent transportation operation and management. Due to the uncertainty nature contributed by the volatile traffic, travel time estimates are better described by probability distributions than deterministic models. Existing travel time distribution estimation approaches are mostly based on predefined probability distributions. Other approaches, while relaxing the constraint, fail to utilize the topological information and are data-inefficient. In this paper, we propose a novel Bayesian and geometric deep learning-based approach to estimate the travel time distributions of road links within citywide transportation networks based on vehicular GPS trajectories. Particularly, historical or real-time trajectories are first pre-processed to construct partial travel time maps, which are input into a tailor-made Bayesian graph autoencoder to reconstruct multiple complete travel time maps. We further adopt an auxiliary neural network to facilitate the parameter training of the proposed approach following adversarial training principles. To evaluate the proposed approach, we employ a real-world vehicular trajectory dataset in a series of comprehensive case studies. The empirical results indicate that the proposed approach outperforms the best-performing state-of-the-art baseline with an approximately 10% Kullback-Leibler divergence reduction. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
EI入藏号 | 20214811225578
|
EI主题词 | Bayesian networks
; Deep learning
; Inference engines
; Probability distributions
; Roads and streets
; Traffic control
; Travel time
; Uncertainty analysis
|
EI分类号 | Roads and Streets:406.2
; Air Transportation:431
; Highway Transportation:432
; Railroad Transportation:433
; Waterway Transportation:434
; Ergonomics and Human Factors Engineering:461.4
; Expert Systems:723.4.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Probability Theory:922.1
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85119617630
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9560055 |
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256894 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, 518055 (e-mail: yujq3@sustech.edu.cn) |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yu,James J.Q.. Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,PP(99):1-1.
|
APA |
Yu,James J.Q..(2021).Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,PP(99),1-1.
|
MLA |
Yu,James J.Q.."Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING PP.99(2021):1-1.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Yu,James J.Q.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yu,James J.Q.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yu,James J.Q.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论