中文版 | English
题名

Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning

作者
发表日期
2021
DOI
发表期刊
ISSN
1041-4347
EISSN
1558-2191
卷号PP期号:99页码:1-1
摘要
Estimation of road link travel time serves a critical role in intelligent transportation operation and management. Due to the uncertainty nature contributed by the volatile traffic, travel time estimates are better described by probability distributions than deterministic models. Existing travel time distribution estimation approaches are mostly based on predefined probability distributions. Other approaches, while relaxing the constraint, fail to utilize the topological information and are data-inefficient. In this paper, we propose a novel Bayesian and geometric deep learning-based approach to estimate the travel time distributions of road links within citywide transportation networks based on vehicular GPS trajectories. Particularly, historical or real-time trajectories are first pre-processed to construct partial travel time maps, which are input into a tailor-made Bayesian graph autoencoder to reconstruct multiple complete travel time maps. We further adopt an auxiliary neural network to facilitate the parameter training of the proposed approach following adversarial training principles. To evaluate the proposed approach, we employ a real-world vehicular trajectory dataset in a series of comprehensive case studies. The empirical results indicate that the proposed approach outperforms the best-performing state-of-the-art baseline with an approximately 10% Kullback-Leibler divergence reduction.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
EI入藏号
20214811225578
EI主题词
Bayesian networks ; Deep learning ; Inference engines ; Probability distributions ; Roads and streets ; Traffic control ; Travel time ; Uncertainty analysis
EI分类号
Roads and Streets:406.2 ; Air Transportation:431 ; Highway Transportation:432 ; Railroad Transportation:433 ; Waterway Transportation:434 ; Ergonomics and Human Factors Engineering:461.4 ; Expert Systems:723.4.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85119617630
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9560055
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256894
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, 518055 (e-mail: yujq3@sustech.edu.cn)
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yu,James J.Q.. Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,PP(99):1-1.
APA
Yu,James J.Q..(2021).Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,PP(99),1-1.
MLA
Yu,James J.Q.."Citywide Estimation of Travel Time Distributions with Bayesian Deep Graph Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。