中文版 | English
题名

Applying the symmetry groups to study the n body problem

作者
通讯作者Xia,Zhihong
发表日期
2022-02-15
DOI
发表期刊
ISSN
0022-0396
EISSN
1090-2732
卷号310页码:302-326
摘要
We introduce an algebraic method to study local stability in the Newtonian n-body problem when certain symmetries are present. We use representation theory of groups to simplify the calculations of certain eigenvalue problems. The method should be applicable in many cases, we give two main examples here: the square central configurations with four equal masses, and the equilateral triangular configurations with three equal masses plus an additional mass of arbitrary size at the center. Using representation theory of finite groups, we explicitly found the eigenvalues of certain 8×8 Hessians in these examples, with only some simple calculations of traces. We also studied the local stability properties of corresponding relative equilibria in the four-body problems.
关键词
相关链接[Scopus记录]
语种
英语
学校署名
其他
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85119497325
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256905
专题理学院_数学系
作者单位
1.Department of Mathematics,Northwestern University,Evanston,60208,United States
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Xia,Zhihong,Zhou,Tingjie. Applying the symmetry groups to study the n body problem[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2022,310:302-326.
APA
Xia,Zhihong,&Zhou,Tingjie.(2022).Applying the symmetry groups to study the n body problem.JOURNAL OF DIFFERENTIAL EQUATIONS,310,302-326.
MLA
Xia,Zhihong,et al."Applying the symmetry groups to study the n body problem".JOURNAL OF DIFFERENTIAL EQUATIONS 310(2022):302-326.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia,Zhihong]的文章
[Zhou,Tingjie]的文章
百度学术
百度学术中相似的文章
[Xia,Zhihong]的文章
[Zhou,Tingjie]的文章
必应学术
必应学术中相似的文章
[Xia,Zhihong]的文章
[Zhou,Tingjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。