中文版 | English
题名

A meta-learning approach for user-defined spoken term classification with varying classes and examples

作者
通讯作者Ko,Tom
DOI
发表日期
2021
ISSN
2308-457X
EISSN
1990-9772
会议录名称
卷号
6
页码
4071-4075
摘要
Recently we formulated a user-defined spoken term classification task as a few-shot learning task and tackled the task using Model-Agnostic Meta-Learning (MAML) algorithm. Our results show that the meta-learning approach performs much better than conventional supervised learning and transfer learning in the task, especially with limited training data. In this paper, we extend our work by addressing a more practical problem in the user-defined scenario where users can define any number of spoken terms and provide any number of enrollment audio examples for each spoken term. From the perspective of fewshot learning, this is an N-way, K-shot problem with varying N and K. In our work, we relax the values of N and K of each meta-task during training instead of assigning fixed values to them, which differs from what most meta-learning algorithms do. We adopt a metric-based meta-learning algorithm named Prototypical Networks (ProtoNet) as it avoids exhaustive fine-tuning when N varies. Furthermore, we use the Max-Mahalanobis Center (MMC) loss as an effective regularizer to address the problem of ProtoNet under the condition of varying K. Experiments on the Google Speech Commands dataset demonstrate that our proposed method outperforms the conventional N-way, K-shot setting in most testing tasks.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20214711194616
EI主题词
Learning systems ; Speech communication ; Statistical tests
EI分类号
Machine Learning:723.4.2 ; Speech:751.5 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85119300018
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256925
专题工学院_计算机科学与工程系
作者单位
1.Department of Information Engineering,The Chinese University of Hong Kong,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,China
3.Department of Computer Science,City University of Hong Kong,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Yangbin,Ko,Tom,Wang,Jianping. A meta-learning approach for user-defined spoken term classification with varying classes and examples[C],2021:4071-4075.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Wang,Jianping]的文章
百度学术
百度学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Wang,Jianping]的文章
必应学术
必应学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Wang,Jianping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。