中文版 | English
题名

MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS

作者
通讯作者Wu, Kailiang
发表日期
2021
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号43期号:6页码:B1164-B1197
摘要
This paper first explores Tadmor's minimum entropy principle for the special relativistic hydrodynamics (RHD) equations and incorporates this principle into the design of robust proposed schemes are rigorously proven to preserve numerical solutions in a global invariant region constituted by all the known intrinsic constraints: minimum entropy principle, the subluminal constraint on fluid velocity, the positivity of pressure, and the positivity of rest-mass density. Relativistic effects lead to some essential difficulties in the present study which are not encountered in the nonrelativistic case. Most notably, in the RHD case the specific entropy is a highly nonlinear implicit function of the conservative variables, and, moreover, there is also no explicit formula of the flux in terms of the conservative variables. In order to overcome the resulting challenges, we first propose a novel equivalent form of the invariant region by skillfully introducing two auxiliary variables. As a notable feature, all the constraints in the novel form are explicit and linear with respect to the conservative variables. This provides a highly effective approach to theoretically analyze the invariant-region-preserving (IRP) property of numerical schemes for RHD, without any assumption on the IRP property of the exact Riemann solver. Based on this, we prove the convexity of the invariant region and establish the generalized Lax-Friedrichs splitting properties via technical estimates, laying the foundation for our rigorous IRP analyses. It is rigorously shown that the first-order Lax-Friedrichs type scheme for the RHD equations satisfies a local minimum entropy principle and is IRP under a CFL condition. Provably IRP high-order accurate DG and finite volume methods are then developed for the RHD with the help of a simple scaling limiter, which is designed by following the bound-preserving type limiters in the literature. Several numerical examples demonstrate the effectiveness and robustness of the proposed schemes.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[12171227]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000736742800003
出版者
EI入藏号
20221912089777
EI主题词
Entropy ; Galerkin methods ; Hydrodynamics ; Numerical methods
EI分类号
Thermodynamics:641.1 ; Numerical Methods:921.6
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/256942
专题理学院_数学系
作者单位
Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Wu, Kailiang. MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2021,43(6):B1164-B1197.
APA
Wu, Kailiang.(2021).MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS.SIAM JOURNAL ON SCIENTIFIC COMPUTING,43(6),B1164-B1197.
MLA
Wu, Kailiang."MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS".SIAM JOURNAL ON SCIENTIFIC COMPUTING 43.6(2021):B1164-B1197.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Minimum principle on(2735KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu, Kailiang]的文章
百度学术
百度学术中相似的文章
[Wu, Kailiang]的文章
必应学术
必应学术中相似的文章
[Wu, Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。