题名 | MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS |
作者 | |
通讯作者 | Wu, Kailiang |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 1064-8275
|
EISSN | 1095-7197
|
卷号 | 43期号:6页码:B1164-B1197 |
摘要 | This paper first explores Tadmor's minimum entropy principle for the special relativistic hydrodynamics (RHD) equations and incorporates this principle into the design of robust proposed schemes are rigorously proven to preserve numerical solutions in a global invariant region constituted by all the known intrinsic constraints: minimum entropy principle, the subluminal constraint on fluid velocity, the positivity of pressure, and the positivity of rest-mass density. Relativistic effects lead to some essential difficulties in the present study which are not encountered in the nonrelativistic case. Most notably, in the RHD case the specific entropy is a highly nonlinear implicit function of the conservative variables, and, moreover, there is also no explicit formula of the flux in terms of the conservative variables. In order to overcome the resulting challenges, we first propose a novel equivalent form of the invariant region by skillfully introducing two auxiliary variables. As a notable feature, all the constraints in the novel form are explicit and linear with respect to the conservative variables. This provides a highly effective approach to theoretically analyze the invariant-region-preserving (IRP) property of numerical schemes for RHD, without any assumption on the IRP property of the exact Riemann solver. Based on this, we prove the convexity of the invariant region and establish the generalized Lax-Friedrichs splitting properties via technical estimates, laying the foundation for our rigorous IRP analyses. It is rigorously shown that the first-order Lax-Friedrichs type scheme for the RHD equations satisfies a local minimum entropy principle and is IRP under a CFL condition. Provably IRP high-order accurate DG and finite volume methods are then developed for the RHD with the help of a simple scaling limiter, which is designed by following the bound-preserving type limiters in the literature. Several numerical examples demonstrate the effectiveness and robustness of the proposed schemes. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[12171227]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000736742800003
|
出版者 | |
EI入藏号 | 20221912089777
|
EI主题词 | Entropy
; Galerkin methods
; Hydrodynamics
; Numerical methods
|
EI分类号 | Thermodynamics:641.1
; Numerical Methods:921.6
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256942 |
专题 | 理学院_数学系 |
作者单位 | Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Wu, Kailiang. MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2021,43(6):B1164-B1197.
|
APA |
Wu, Kailiang.(2021).MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS.SIAM JOURNAL ON SCIENTIFIC COMPUTING,43(6),B1164-B1197.
|
MLA |
Wu, Kailiang."MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS".SIAM JOURNAL ON SCIENTIFIC COMPUTING 43.6(2021):B1164-B1197.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Minimum principle on(2735KB) | -- | -- | 限制开放 | -- |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Kailiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Kailiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Kailiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论