题名 | A Local Deep Learning Method for Solving High Order Partial Differential Equations |
作者 | |
发表日期 | 2021-09
|
DOI | |
发表期刊 | |
ISSN | 1004-8979
|
EISSN | 2079-7338
|
摘要 | At present, deep learning based methods are being employed to resolve
the computational challenges of high-dimensional partial differential equations
(PDEs). But the computation of the high order derivatives of neural networks is
costly, and high order derivatives lack robustness for training purposes. We propose
a novel approach to solving PDEs with high order derivatives by simultaneously ap
proximating the function value and derivatives. We introduce intermediate variables
to rewrite the PDEs into a system of low order differential equations as what is done
in the local discontinuous Galerkin method. The intermediate variables and the so
lutions to the PDEs are simultaneously approximated by a multi-output deep neural
network. By taking the residual of the system as a loss function, we can optimize
the network parameters to approximate the solution. The whole process relies on
low order derivatives. Numerous numerical examples are carried out to demon
strate that our local deep learning is effificient, robust, flflexible, and is particularly
well-suited for high-dimensional PDEs with high order derivatives. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Natural Science Foundation of China/Hong Kong RRC Joint Research Scheme[NSFC/RGC 11961160718]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001]
; National Science Foundation of China[NSFC-11871264]
; Guangdong Basic and Applied Basic Research Foundation[2018A0303130123]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
; Mathematics
|
WOS记录号 | WOS:000723826100001
|
出版者 | |
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/256943 |
专题 | 南方科技大学 理学院_数学系 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Jiang Yang,Quanhui Zhu. A Local Deep Learning Method for Solving High Order Partial Differential Equations[J]. Numerical Mathematics-Theory Methods and Applications,2021.
|
APA |
Jiang Yang,&Quanhui Zhu.(2021).A Local Deep Learning Method for Solving High Order Partial Differential Equations.Numerical Mathematics-Theory Methods and Applications.
|
MLA |
Jiang Yang,et al."A Local Deep Learning Method for Solving High Order Partial Differential Equations".Numerical Mathematics-Theory Methods and Applications (2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
LDLM_NMTMA2021.pdf(662KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论