中文版 | English
题名

Empirical Modeling of Ionospheric Current Using Empirical Orthogonal Function Analysis and Artificial Neural Network

作者
通讯作者Ruan,Haibing
发表日期
2021-11-01
DOI
发表期刊
EISSN
1542-7390
卷号19期号:11
摘要
Given the potential importance of solar quiet (Sq) ionospheric current in geomagnetic field modeling, it is vital to obtain accurate parameters characterizing its variations, particularly the spatial and temporal variations. In this paper, we derived the Sq current function based on the spherical harmonic analysis (SHA) technique using a 14-year (2006–2019) quiet geomagnetic field record over the American sector. The empirical orthogonal function (EOF) analysis was then applied to deduce temporal and spatial variations of the Sq current. It is observed that the first EOF mode of the Sq current function is dominated by solar activity, while the second and third EOF modes exhibit annual and semiannual variations, respectively. Also, the artificial neural network (ANN) model of Sq current function was constructed to validate the EOF model predictions. While the Sq current intensity predicted by the ANN model is underestimated by 2.83%, the EOF model underpredicted the Sq current intensity by 1.92% relative to the observation. The root mean square error (RMSE) of the EOF model is 0.64 kA. This RMSE is about 79% smaller than that of the ANN model. In addition, both the EOF and ANN models capture the variation of the total Sq current (J) intensity with respect to solar activity. In principle, the EOF model had an optimal performance at nearly 98% accuracy, with the ANN model exhibiting almost the same degree of accuracy, which appears to be a reference point for ionospheric conditions when looking for space weather applications.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation (NSF) of China[41804151,42074186,41804150] ; Natural Science Foundation of Jiangsu Province[BK20211036] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515011216]
WOS研究方向
Astronomy & Astrophysics ; Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences
WOS类目
Astronomy & Astrophysics ; Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences
WOS记录号
WOS:000722467500012
出版者
ESI学科分类
SPACE SCIENCE
Scopus记录号
2-s2.0-85119691940
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257089
专题理学院_地球与空间科学系
工学院_电子与电气工程系
作者单位
1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China
2.Department of Physics,Federal University of Technology Akure,Akure,Nigeria
3.School of Remote Sensing and Geomatics Engineering,Nanjing University of Information Science and Technology,Nanjing,China
4.GFZ German Research Centre for Geosciences,Potsdam,Germany
5.Planetary Environmental and Astrobiological Research Laboratory (PEARL),School of Atmospheric Sciences,Sun Yat-Sen University,Zhuhai,China
6.Department of Physics,Universidad de Santiago de Chile,Santiago,Chile
7.Department of Electronic and Electrical Engineering,University of Bath,Bath,United Kingdom
8.International Center for Space Weather Science and Education,Kyushu University,Fukuoka,Japan
第一作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Owolabi,Charles,Ruan,Haibing,Yamazaki,Yosuke,et al. Empirical Modeling of Ionospheric Current Using Empirical Orthogonal Function Analysis and Artificial Neural Network[J]. Space Weather,2021,19(11).
APA
Owolabi,Charles.,Ruan,Haibing.,Yamazaki,Yosuke.,Li,Jinfeng.,Zhong,Jiahao.,...&Yoshikawa,Akimasa.(2021).Empirical Modeling of Ionospheric Current Using Empirical Orthogonal Function Analysis and Artificial Neural Network.Space Weather,19(11).
MLA
Owolabi,Charles,et al."Empirical Modeling of Ionospheric Current Using Empirical Orthogonal Function Analysis and Artificial Neural Network".Space Weather 19.11(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Owolabi,Charles]的文章
[Ruan,Haibing]的文章
[Yamazaki,Yosuke]的文章
百度学术
百度学术中相似的文章
[Owolabi,Charles]的文章
[Ruan,Haibing]的文章
[Yamazaki,Yosuke]的文章
必应学术
必应学术中相似的文章
[Owolabi,Charles]的文章
[Ruan,Haibing]的文章
[Yamazaki,Yosuke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。