题名 | CS-Fnet: A Compressive Sampling Frequency Neural Network for Simultaneous Image Compression and Recognition |
作者 | |
DOI | |
发表日期 | 2021-11
|
会议名称 | 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)
|
ISBN | 978-1-6654-4522-1
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 23-25 Sept. 2021
|
会议地点 | Karlsruhe, Germany
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Data recognition using compressive measurements is desired for intelligent edge devices to save computation and communication resources. However, direct recognition of compressed image data is often difficult because the compression operation disturbs the original signal structure. In compressive sensing (CS), original signals are transformed into the frequency domain or other domains for sparse representations. This paper presents a compressive sampling frequency neural network (CS-Fnet) to achieve high computational efficiency for compressed image recognition, whose measurement matrix (MM) is automatically obtained through the CS-Fnet training. Furthermore, the MM is constructed in the form of the Kronecker product, which can reduce the number of MM parameters, and hence the CS-Fnet training can achieve much higher computational efficiency and convergence speed. The proposed method is validated using the MNIST dataset and gesture datasets. The experiment results demonstrate that the proposed CS-Fnet outperforms traditional convolution neural networks (CNNs) in terms of image recognition accuracy, and the learned MMs yield higher reconstruction accuracy than traditional MMs. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61773197]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematics, Applied
|
WOS记录号 | WOS:000853882500042
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9591201 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257189 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | The Department of Computer Science and Engineering, and the Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Rui Ma,Qi Hao. CS-Fnet: A Compressive Sampling Frequency Neural Network for Simultaneous Image Compression and Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-6.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Rui Ma]的文章 |
[Qi Hao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Rui Ma]的文章 |
[Qi Hao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Rui Ma]的文章 |
[Qi Hao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论