题名 | Adaptive Differential Evolution based on Exploration and Exploitation Control |
作者 | |
通讯作者 | Xin Yao |
DOI | |
发表日期 | 2021-08-09
|
会议名称 | 2021 IEEE Congress on Evolutionary Computation (CEC)
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 41-48
|
会议日期 | 28 June-1 July 2021
|
会议地点 | Kraków, Poland
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Search operator design and parameter tuning are essential parts of algorithm design. However, they often involve trial-and-error and are very time-consuming. A new differential evolution (DE) algorithm with adaptive exploration and exploitation control (AEEC-DE) is proposed in this work to tackle this challenge. The proposed method improves the performance of DE by automatically selecting trial vector generation strategies (both mutation and crossover operators) and dynamically generating the associated control parameter values. A probability-based exploration and exploitation measurement is introduced to estimate whether the state of each newly generated individual is in exploration or exploitation. The state of historical individuals is used to assess the exploration and exploitation capabilities of different generation strategies and parameter values. Then, the strategies and parameters of DE are adapted following the common belief that evolutionary algorithms (EAs) should start with exploration and then gradually change into exploitation. The performance of AEEC-DE is evaluated through experimental studies on a set of test problems and compared with several state-of-the-art adaptive DE variants. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2019A1515110575]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100006
|
EI入藏号 | 20220711650793
|
EI主题词 | Genetic algorithms
; Natural resources exploration
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504876 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257191 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Laboratory of Mechanics of Normandy (LMN), INSA Rouen Normandy, 76000 Rouen, France 2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hao BAI,Changwu Huang,Xin Yao. Adaptive Differential Evolution based on Exploration and Exploitation Control[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:41-48.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Adaptive Differentia(1703KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论