中文版 | English
题名

Adaptive Differential Evolution based on Exploration and Exploitation Control

作者
通讯作者Xin Yao
DOI
发表日期
2021-08-09
会议名称
2021 IEEE Congress on Evolutionary Computation (CEC)
ISBN
978-1-7281-8394-7
会议录名称
页码
41-48
会议日期
28 June-1 July 2021
会议地点
Kraków, Poland
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Search operator design and parameter tuning are essential parts of algorithm design. However, they often involve trial-and-error and are very time-consuming. A new differential evolution (DE) algorithm with adaptive exploration and exploitation control (AEEC-DE) is proposed in this work to tackle this challenge. The proposed method improves the performance of DE by automatically selecting trial vector generation strategies (both mutation and crossover operators) and dynamically generating the associated control parameter values. A probability-based exploration and exploitation measurement is introduced to estimate whether the state of each newly generated individual is in exploration or exploitation. The state of historical individuals is used to assess the exploration and exploitation capabilities of different generation strategies and parameter values. Then, the strategies and parameters of DE are adapted following the common belief that evolutionary algorithms (EAs) should start with exploration and then gradually change into exploitation. The performance of AEEC-DE is evaluated through experimental studies on a set of test problems and compared with several state-of-the-art adaptive DE variants.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Basic and Applied Basic Research Foundation[2019A1515110575]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100006
EI入藏号
20220711650793
EI主题词
Genetic algorithms ; Natural resources exploration
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504876
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257191
专题工学院_计算机科学与工程系
作者单位
1.Laboratory of Mechanics of Normandy (LMN), INSA Rouen Normandy, 76000 Rouen, France
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hao BAI,Changwu Huang,Xin Yao. Adaptive Differential Evolution based on Exploration and Exploitation Control[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:41-48.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Adaptive Differentia(1703KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao BAI]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Hao BAI]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Hao BAI]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。