题名 | An Edge-device Based Fast Fall Detection Using Spatio-temporal Optical Flow Model |
作者 | |
通讯作者 | Hao Yu |
共同第一作者 | Yuchao Yang |
DOI | |
发表日期 | 2021-10-30
|
会议名称 | 2021 43th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
|
ISSN | 1557-170X
|
EISSN | 1558-4615
|
ISBN | 978-1-7281-1180-3
|
会议录名称 | |
页码 | 5067-5071
|
会议日期 | 2021-11-01
|
会议地点 | online
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | ["The elderly fall detection is one critical function in health of the elderly. A real-time fall detection for the elderly has been a significant healthcare issue. The traditional video analysis on cloud has large communication overhead. In this paper, a fast fall detection system based on the spatiotemporal optical flow model is proposed, which is further deeply compressed by a structured tensorization towards an implementation on edge devices. Firstly, an object extractor is built to extract motion objects from video clips. The spatiotemporal optical flow model is formed to estimate optical flow fields of motion objects. It can extract features from objects and their corresponding optical flow fields. Then these two features are fused to form new spatio-temporal features. Finally, the tensor-compressed model processes the fused features to determine fall detection, where the strongest optical field would indicate the fall. We conduct experiments with Multicam and URFD datasets.","Clinical relevance- It demonstrates that the proposed model achieves the accuracy of 9623% and 9937%, respectively. Besides, it attains the inference speed of 833 FPS and storage reduction of 2109x. Our work is further implemented on an AI acceleration core based edge device, and the runtime is reduced by 921x.This high performance system can be applied to the field of clinical monitoring in the future."] |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China (NSFC)[62034007]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Biomedical
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000760910505002
|
EI入藏号 | 20220811670011
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9629840 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257192 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yuchao Yang,Hongwei Ren,Chenghao Li,et al. An Edge-device Based Fast Fall Detection Using Spatio-temporal Optical Flow Model[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:5067-5071.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
C134.An Edge-device (1124KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论