中文版 | English
题名

An Edge-device Based Fast Fall Detection Using Spatio-temporal Optical Flow Model

作者
通讯作者Hao Yu
共同第一作者Yuchao Yang
DOI
发表日期
2021-10-30
会议名称
2021 43th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ISSN
1557-170X
EISSN
1558-4615
ISBN
978-1-7281-1180-3
会议录名称
页码
5067-5071
会议日期
2021-11-01
会议地点
online
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
["The elderly fall detection is one critical function in health of the elderly. A real-time fall detection for the elderly has been a significant healthcare issue. The traditional video analysis on cloud has large communication overhead. In this paper, a fast fall detection system based on the spatiotemporal optical flow model is proposed, which is further deeply compressed by a structured tensorization towards an implementation on edge devices. Firstly, an object extractor is built to extract motion objects from video clips. The spatiotemporal optical flow model is formed to estimate optical flow fields of motion objects. It can extract features from objects and their corresponding optical flow fields. Then these two features are fused to form new spatio-temporal features. Finally, the tensor-compressed model processes the fused features to determine fall detection, where the strongest optical field would indicate the fall. We conduct experiments with Multicam and URFD datasets.","Clinical relevance- It demonstrates that the proposed model achieves the accuracy of 9623% and 9937%, respectively. Besides, it attains the inference speed of 833 FPS and storage reduction of 2109x. Our work is further implemented on an AI acceleration core based edge device, and the runtime is reduced by 921x.This high performance system can be applied to the field of clinical monitoring in the future."]
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)[62034007]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号
WOS:000760910505002
EI入藏号
20220811670011
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9629840
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257192
专题南方科技大学
工学院_深港微电子学院
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yuchao Yang,Hongwei Ren,Chenghao Li,et al. An Edge-device Based Fast Fall Detection Using Spatio-temporal Optical Flow Model[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:5067-5071.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
C134.An Edge-device (1124KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuchao Yang]的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
百度学术
百度学术中相似的文章
[Yuchao Yang]的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
必应学术
必应学术中相似的文章
[Yuchao Yang]的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。