题名 | The Performance Effect of Model Accuracy on Classification-Assisted Evolutionary Algorithms |
作者 | |
通讯作者 | Xiaofen Lu |
DOI | |
发表日期 | 2021-08
|
会议名称 | 2021 IEEE Congress on Evolutionary Computation (CEC)
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 1527-1536
|
会议日期 | 2021/06/28-2021/07/01
|
会议地点 | Kraków, Poland
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Optimization problems with costly function evaluation widely exist in real-world applications. Surrogate models are commonly used in the field of optimization to deal with such expensive optimization problems. In surrogate model-assisted evolutionary algorithms (EAs), surrogate models like regression models, ranking models or classification models are built based on historical data and then used to compare candidate solutions in place of real function evaluations. Researchers have also proposed various methods to make better use of surrogate models in the optimization process of EAs. However, there is no comprehensive study about how much accuracy of the built model is accurate enough to bring benefits to the optimization. Motivated by this, this work proposes a method to study the performance effect of model accuracy on surrogate model-assisted EAs. Specifically, the method does not really build surrogate models but assumes different model accuracies in individual selection. Two classification-assisted EAs, classification-assisted differential evolution (CADE) and relationship classification-based preselection strategy (RCPS) are analyzed in this work. The experimental results on a set of test functions show that a weak learner with classification accuracy larger than 50% is acceptable ignoring the cost of model building. Another observation is that the performances of CADE and RCPS increase monotonically and nonlinearly with the classification accuracy. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
学科门类 | 工学
; 工学::计算机科学与技术(可授工学、理学学位)
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61906082]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; Science and Technology Commission of Shanghai Municipality[19511120600]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100193
|
EI入藏号 | 20220711650634
|
EI主题词 | Classification (of information)
; Function evaluation
; Optimization
; Regression analysis
|
EI分类号 | Information Theory and Signal Processing:716.1
; Information Sources and Analysis:903.1
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Mathematical Statistics:922.2
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504809 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257195 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.The Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.The Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chang Cao,Xiaofen Lu,Yachen Lu,et al. The Performance Effect of Model Accuracy on Classification-Assisted Evolutionary Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1527-1536.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
CEC2021_The_Performa(14002KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论