中文版 | English
题名

S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving

作者
通讯作者HAO YU
发表日期
2021-09
DOI
发表期刊
ISSN
2157-6904
EISSN
2157-6912
卷号12期号:5
摘要
Real-time segmentation and understanding of driving scenes are crucial in autonomous driving. Traditional pixel-wise approaches extract scene information by segmenting all pixels in a frame, and hence are inefficient and slow. Proposal-wise approaches only learn from the proposed object candidates. but still require multiple steps on the expensive proposal methods. Instead, this work presents a fast single-shot segmentation strategy for video scene understanding. The proposed net, called S3-Net, quickly locates and segments target subscenes, and meanwhile extracts attention-aware time-series sub-scene features (ats-features) as inputs to an attention-aware spatio-temporal model (ASM). Utilizing tensorization and quantization techniques, S3-Net is intended to be lightweight for edge computing. Experiments results on CityScapes, UCF11, HMDB51, and MOMENTS datasets demonstrate that the proposed S3-Net achieves an accuracy improvement of 8.1% versus the 3D-CNN based approach on UCF11, a storage reduction of 6.9x and an inference speed of 22.8 FPS on CityScapes with a GTX1080Ti GPU.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China (NSFC)[6203000189] ; National Key Research and Development Program of China[2019YFB2205005] ; Key-Area Research and Development Program of Guangdong Province[2019B010142001] ; Innovative Team Program of Education Department of Guangdong Province[2018KCXTD028] ; Shenzhen Science and Technology Program[KQTD20200820113051096]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:000732997200007
出版者
来源库
人工提交
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257211
专题南方科技大学
工学院_深港微电子学院
作者单位
1.Shanghai Jiao Tong University
2.Southern University of Science and Technology
3.The University of Hong Kong
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
YUAN CHENG,Yuchao Yang,Hai-Bao Chen,et al. S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving[J]. ACM Transactions on Intelligent Systems and Technology,2021,12(5).
APA
YUAN CHENG,Yuchao Yang,Hai-Bao Chen,NGAI WONG,&HAO YU.(2021).S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving.ACM Transactions on Intelligent Systems and Technology,12(5).
MLA
YUAN CHENG,et al."S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving".ACM Transactions on Intelligent Systems and Technology 12.5(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
C129.S3-Net_A_Fast_a(9243KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[YUAN CHENG]的文章
[Yuchao Yang]的文章
[Hai-Bao Chen]的文章
百度学术
百度学术中相似的文章
[YUAN CHENG]的文章
[Yuchao Yang]的文章
[Hai-Bao Chen]的文章
必应学术
必应学术中相似的文章
[YUAN CHENG]的文章
[Yuchao Yang]的文章
[Hai-Bao Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。