题名 | S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving |
作者 | |
通讯作者 | HAO YU |
发表日期 | 2021-09
|
DOI | |
发表期刊 | |
ISSN | 2157-6904
|
EISSN | 2157-6912
|
卷号 | 12期号:5 |
摘要 | Real-time segmentation and understanding of driving scenes are crucial in autonomous driving. Traditional pixel-wise approaches extract scene information by segmenting all pixels in a frame, and hence are inefficient and slow. Proposal-wise approaches only learn from the proposed object candidates. but still require multiple steps on the expensive proposal methods. Instead, this work presents a fast single-shot segmentation strategy for video scene understanding. The proposed net, called S3-Net, quickly locates and segments target subscenes, and meanwhile extracts attention-aware time-series sub-scene features (ats-features) as inputs to an attention-aware spatio-temporal model (ASM). Utilizing tensorization and quantization techniques, S3-Net is intended to be lightweight for edge computing. Experiments results on CityScapes, UCF11, HMDB51, and MOMENTS datasets demonstrate that the proposed S3-Net achieves an accuracy improvement of 8.1% versus the 3D-CNN based approach on UCF11, a storage reduction of 6.9x and an inference speed of 22.8 FPS on CityScapes with a GTX1080Ti GPU. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China (NSFC)[6203000189]
; National Key Research and Development Program of China[2019YFB2205005]
; Key-Area Research and Development Program of Guangdong Province[2019B010142001]
; Innovative Team Program of Education Department of Guangdong Province[2018KCXTD028]
; Shenzhen Science and Technology Program[KQTD20200820113051096]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:000732997200007
|
出版者 | |
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257211 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Shanghai Jiao Tong University 2.Southern University of Science and Technology 3.The University of Hong Kong |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
YUAN CHENG,Yuchao Yang,Hai-Bao Chen,et al. S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving[J]. ACM Transactions on Intelligent Systems and Technology,2021,12(5).
|
APA |
YUAN CHENG,Yuchao Yang,Hai-Bao Chen,NGAI WONG,&HAO YU.(2021).S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving.ACM Transactions on Intelligent Systems and Technology,12(5).
|
MLA |
YUAN CHENG,et al."S3-Net: A Fast Scene Understanding Network by Single-shot Segmentation for Autonomous Driving".ACM Transactions on Intelligent Systems and Technology 12.5(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
C129.S3-Net_A_Fast_a(9243KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论