中文版 | English
题名

ATFVO: An Attentive Tensor-compressed LSTM Model with Optical Flow Features for Monocular Visual Odometry

作者
通讯作者Hao Yu
DOI
发表日期
2021-11-19
会议名称
2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA)
ISBN
978-1-6654-1824-9
会议录名称
页码
79-85
会议日期
2021-09-11
会议地点
Beijing
摘要
This paper proposes a new framework called ATFVO which can be deployed on the edge device to resolve monocular visual odometry problem. The vast majority of visual odometry algorithms using deep learning are equivalent to or beyond the traditional visual odometry algorithms in performance, however they do not consider the computing capability of edge equipment. In this paper, convolution neural network (CNN) and attentive tensor-compressed compression LSTM (A-T-LSTM) are used, with optical flow feature as input and a 6-DoF absolute-scale pose as output. The framework is fused with the spatio-temporal feature and deal with the overfitting problem of over-parameterized LSTM with high-dimensional inputs, and utilizes attention mechanism to get poses from the sequence output of T-LSTM. The poses are estimated from the original RGB images sequence without depending on any prior knowledge. The experimental outcomes at the KITTI dataset display that, in compared with the performance of the most advanced methods, the single T-LSTM model is 141× smaller than the original LSTM model, and the entire model is nearly one-seventh of DeepVO with a speed 23× faster than Flowdometry. The proposed VO is deployed to the robot based on raspberry pi, which can achieve real-time inference and navigate a cruise.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
收录类别
EI入藏号
20220411524111
EI主题词
Computer vision ; Optical flows ; Tensors ; Vision
EI分类号
Computer Applications:723.5 ; Light/Optics:741.1 ; Vision:741.2 ; Algebra:921.1
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9612673
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257238
专题南方科技大学
工学院_深港微电子学院
作者单位
Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Hongwei Ren,Chenghao Li,Xinyi Zhang,et al. ATFVO: An Attentive Tensor-compressed LSTM Model with Optical Flow Features for Monocular Visual Odometry[C],2021:79-85.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
oC14.ATFVO_An_Attent(2461KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
[Xinyi Zhang]的文章
百度学术
百度学术中相似的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
[Xinyi Zhang]的文章
必应学术
必应学术中相似的文章
[Hongwei Ren]的文章
[Chenghao Li]的文章
[Xinyi Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。