题名 | ATFVO: An Attentive Tensor-compressed LSTM Model with Optical Flow Features for Monocular Visual Odometry |
作者 | |
通讯作者 | Hao Yu |
DOI | |
发表日期 | 2021-11-19
|
会议名称 | 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA)
|
ISBN | 978-1-6654-1824-9
|
会议录名称 | |
页码 | 79-85
|
会议日期 | 2021-09-11
|
会议地点 | Beijing
|
摘要 | This paper proposes a new framework called ATFVO which can be deployed on the edge device to resolve monocular visual odometry problem. The vast majority of visual odometry algorithms using deep learning are equivalent to or beyond the traditional visual odometry algorithms in performance, however they do not consider the computing capability of edge equipment. In this paper, convolution neural network (CNN) and attentive tensor-compressed compression LSTM (A-T-LSTM) are used, with optical flow feature as input and a 6-DoF absolute-scale pose as output. The framework is fused with the spatio-temporal feature and deal with the overfitting problem of over-parameterized LSTM with high-dimensional inputs, and utilizes attention mechanism to get poses from the sequence output of T-LSTM. The poses are estimated from the original RGB images sequence without depending on any prior knowledge. The experimental outcomes at the KITTI dataset display that, in compared with the performance of the most advanced methods, the single T-LSTM model is 141× smaller than the original LSTM model, and the entire model is nearly one-seventh of DeepVO with a speed 23× faster than Flowdometry. The proposed VO is deployed to the robot based on raspberry pi, which can achieve real-time inference and navigate a cruise. |
关键词 | |
学校署名 | 第一
; 通讯
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20220411524111
|
EI主题词 | Computer vision
; Optical flows
; Tensors
; Vision
|
EI分类号 | Computer Applications:723.5
; Light/Optics:741.1
; Vision:741.2
; Algebra:921.1
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9612673 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257238 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Hongwei Ren,Chenghao Li,Xinyi Zhang,et al. ATFVO: An Attentive Tensor-compressed LSTM Model with Optical Flow Features for Monocular Visual Odometry[C],2021:79-85.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
oC14.ATFVO_An_Attent(2461KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论