中文版 | English
题名

Accelerate proposal generation in R-CNN methods for fast pedestrian extraction

作者
通讯作者Li, Guiying
发表日期
2019-06-03
DOI
发表期刊
ISSN
0264-0473
EISSN
1758-616X
卷号37期号:3页码:435-453
摘要

Purpose The purpose of this study is to develop a novel region-based convolutional neural networks (R-CNN) approach that is more efficient while at least as accurate as existing R-CNN methods. In this way, the proposed method, namely R-2-CNN, provides a more powerful tool for pedestrian extraction for person re-identification, which involve a huge number of images and pedestrian needs to be extracted efficiently to meet the real-time requirement. Design/methodology/approach The proposed R-2-CNN is tested on two types of data sets. The first one the USC Pedestrian Detection data set, which consists of three sub-sets USC-A, UCS-B and USC-C, with respect to their characteristics. This data set is used to test the performance of R-2-CNN in the pedestrian extraction task. The speed and performance of the investigated algorithms were collected. The second data set is the PASCAL VOC 2007 data set, which is a common benchmark data set for object detection. This data set was used to analyze characteristics of R-2-CNN in the case of general object detection task. Findings This study proposes a novel R-CNN method that is both more efficient and more accurate than existing methods. The method, when used as an object detector, would facilitate the data preprocessing stage of person re-identification. Originality/value The study proposes a novel approach for object detection, which shows advantages in both efficiency and accuracy for pedestrian detection task. It contributes to both data preprocessing for person re-identification and the research on deep learning.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Information Science & Library Science
WOS类目
Information Science & Library Science
WOS记录号
WOS:000482440600004
出版者
ESI学科分类
SOCIAL SCIENCES, GENERAL
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25724
专题工学院_计算机科学与工程系
作者单位
1.Inst Sci & Tech Informat China, Haidian Qu, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang, Juncheng,Li, Guiying. Accelerate proposal generation in R-CNN methods for fast pedestrian extraction[J]. ELECTRONIC LIBRARY,2019,37(3):435-453.
APA
Wang, Juncheng,&Li, Guiying.(2019).Accelerate proposal generation in R-CNN methods for fast pedestrian extraction.ELECTRONIC LIBRARY,37(3),435-453.
MLA
Wang, Juncheng,et al."Accelerate proposal generation in R-CNN methods for fast pedestrian extraction".ELECTRONIC LIBRARY 37.3(2019):435-453.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2019_elecLib_r2cnn.p(1744KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Juncheng]的文章
[Li, Guiying]的文章
百度学术
百度学术中相似的文章
[Wang, Juncheng]的文章
[Li, Guiying]的文章
必应学术
必应学术中相似的文章
[Wang, Juncheng]的文章
[Li, Guiying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。