中文版 | English
题名

MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting

作者
通讯作者Yong,Wang
发表日期
2021-11
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号22期号:6页码:bbab235
摘要

Multi-omics data allow us to select a small set of informative markers for the discrimination of specific cell types and study of cellular heterogeneity. However, it is often challenging to choose an optimal marker panel from the high-dimensional molecular profiles for a large amount of cell types. Here, we propose a method called Mixed Integer programming Model to Identify Cell type-specific marker panel (MIMIC). MIMIC maintains the hierarchical topology among different cell types and simultaneously maximizes the specificity of a fixed number of selected markers. MIMIC was benchmarked on the mouse ENCODE RNA-seq dataset, with 29 diverse tissues, for 43 surface markers (SMs) and 1345 transcription factors (TFs). MIMIC could select biologically meaningful markers and is robust for different accuracy criteria. It shows advantages over the standard single gene-based approaches and widely used dimensional reduction methods, such as multidimensional scaling and t-SNE, both in accuracy and in biological interpretation. Furthermore, the combination of SMs and TFs achieves better specificity than SMs or TFs alone. Applying MIMIC to a large collection of 641 RNA-seq samples covering 231 cell types identifies a panel of TFs and SMs that reveal the modularity of cell type association networks. Finally, the scalability of MIMIC is demonstrated by selecting enhancer markers from mouse ENCODE data. MIMIC is freely available at https://github.com/MengZou1/MIMIC.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[12025107,11871463,61621003,12001215] ; Fundamental Research Funds for Central Universities[5003011023] ; National Institutes of Health["P50HG007735","R01HG007834","R01HG010359"] ; National Key R&D Program of China["2017YFC0908400","2020YFA0712402"]
WOS研究方向
Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目
Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号
WOS:000733325700105
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257262
专题南方科技大学
生命科学学院_生物系
作者单位
1.he Department of Mathematics, Huazhong University of Science and Technology.
2.e Department of Genetics and Biochemistry, Clemson University.
3.e Academy of Mathematics and Systems Science, CAS.
4.e Department of Health Research & Policy, Bio-X Program Stanford University.
5.e Southern University of Science and Technology.
6.e Department of Statistics, Department of Biomedical Data Science, Bio-X Program Stanford University.
7.Academy of Mathematics and Systems Science, Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, CAS.
推荐引用方式
GB/T 7714
Meng,Zou,Zhana,Duren,Qiuyue,Yuan,et al. MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting[J]. BRIEFINGS IN BIOINFORMATICS,2021,22(6):bbab235.
APA
Meng,Zou.,Zhana,Duren.,Qiuyue,Yuan.,Henry,Li.,Andrew Paul,Hutchins.,...&Yong,Wang.(2021).MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting.BRIEFINGS IN BIOINFORMATICS,22(6),bbab235.
MLA
Meng,Zou,et al."MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting".BRIEFINGS IN BIOINFORMATICS 22.6(2021):bbab235.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2021-Zou-BiB.pdf(2078KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Meng,Zou]的文章
[Zhana,Duren]的文章
[Qiuyue,Yuan]的文章
百度学术
百度学术中相似的文章
[Meng,Zou]的文章
[Zhana,Duren]的文章
[Qiuyue,Yuan]的文章
必应学术
必应学术中相似的文章
[Meng,Zou]的文章
[Zhana,Duren]的文章
[Qiuyue,Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。