中文版 | English
题名

DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning

作者
通讯作者Yuhui Hu; Wei Chen; Xin Gao
发表日期
2021-03-02
DOI
发表期刊
ISSN
1672-0229
卷号S1672-0229期号:21页码:00049-8
摘要

Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. Previous bioinformatic works have mainly focused on the recognition of polyadenylation sites (PASs) in a given genomic sequence, which is a binary classification problem. Recently, computational methods for predicting the usage level of alternative PASs in a same gene have been proposed. However, all of them cast the problem as a non-quantitative pairwise comparison task and do not take the competition among multiple PASs into account. To address this, here we propose a deep learning architecture, DeeReCT-APA, to quantitatively predict the usage of all alternative PASs of a given gene. To accommodate different genes with potentially different numbers of PASs, DeeReCT-APA treats the problem as a regression task with a variable-length target. Based on a CNN-LSTM architecture, DeeReCT-APA extracts sequence features with CNN layers, uses bidirectional LSTM to explicitly model the interactions among competing PASs, and outputs percentage scores representing the usage levels of all PASs of a gene. In addition to the fact that only our method can predict quantitatively the usage of all the PASs within a gene, we show that our method consistently outperforms other existing methods on three different tasks for which they are trained: pairwise comparison task, highest usage prediction task, and ranking task. Finally, we demonstrate that our method can be used to predict the effect of genetic variations on APA patterns and shed light on future mechanistic understanding in APA regulation. Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo.

关键词
收录类别
语种
英语
学校署名
通讯
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
人工提交
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257322
专题生命科学学院_生物系
生命科学学院
作者单位
1.King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
2.Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
3.Cancer Science Institute of Singapore, Singapore 117599, Singapore
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Zhongxiao Li,Yisheng Li,Bin Zhang,et al. DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning[J]. GENOMICS PROTEOMICS & BIOINFORMATICS,2021,S1672-0229(21):00049-8.
APA
Zhongxiao Li.,Yisheng Li.,Bin Zhang.,Yu Li.,Yongkang Long.,...&Xin Gao.(2021).DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning.GENOMICS PROTEOMICS & BIOINFORMATICS,S1672-0229(21),00049-8.
MLA
Zhongxiao Li,et al."DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning".GENOMICS PROTEOMICS & BIOINFORMATICS S1672-0229.21(2021):00049-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Prediction of Altern(650KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhongxiao Li]的文章
[Yisheng Li]的文章
[Bin Zhang]的文章
百度学术
百度学术中相似的文章
[Zhongxiao Li]的文章
[Yisheng Li]的文章
[Bin Zhang]的文章
必应学术
必应学术中相似的文章
[Zhongxiao Li]的文章
[Yisheng Li]的文章
[Bin Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。