中文版 | English
题名

QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs

作者
通讯作者Wei Chen; Xin Gao
共同第一作者Shuye Tian
发表日期
2021-02
DOI
发表期刊
ISSN
1672-0229
EISSN
2210-3244
卷号S1672-0229期号:21页码:00034-6
摘要

The number of available protein sequences in public databases is increasing exponentially. However, a significant percentage of these sequences lack functional annotation, which is essential for the understanding of how biological systems operate. We propose a novel method, Quantitative Annotation of Unknown STructure (QAUST), to infer protein functions, specifically Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. QAUST uses three sources of information: structure information encoded by global and local structure similarity search, biological network information inferred by protein–protein interaction data, and sequence information extracted from functionally discriminative sequence motifs. These three pieces of information are combined by consensus averaging to make the final prediction. Our approach has been tested on 500 protein targets from the CAFA (Critical Assessment of Functional Annotation) benchmark set. The results show that our method provides accurate functional annotation and outperforms other prediction methods based on sequence similarity search or threading. We further demonstrate that a previously unknown function of TRIM22 protein predicted by QAUST can be experimentally validated. QAUST can be accessed at http://www.cbrc.kaust.edu.sa/qaust/submit/.

收录类别
语种
英语
学校署名
通讯
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
人工提交
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257324
专题生命科学学院_生物系
生命科学学院
作者单位
1.Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
2.Department of Biology, Southern University of Science and Technology of China (SUSTC), Shenzhen 518055, China
3.Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
4.College of Computer Science and Engineering, University of Hail, Hail 55476, Saudi Arabia
5.Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
6.Department of Molecular Bioscience, University of Kansas, Lawrence, KS 66047, USA
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Fatima Zohra Smaili,Shuye Tian,Ambrish Roy,et al. QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs[J]. GENOMICS PROTEOMICS & BIOINFORMATICS,2021,S1672-0229(21):00034-6.
APA
Fatima Zohra Smaili.,Shuye Tian.,Ambrish Roy.,Meshari Alazmi.,Stefan T. Arold.,...&Xin Gao.(2021).QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs.GENOMICS PROTEOMICS & BIOINFORMATICS,S1672-0229(21),00034-6.
MLA
Fatima Zohra Smaili,et al."QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs".GENOMICS PROTEOMICS & BIOINFORMATICS S1672-0229.21(2021):00034-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
maina.pdf(3294KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fatima Zohra Smaili]的文章
[Shuye Tian]的文章
[Ambrish Roy]的文章
百度学术
百度学术中相似的文章
[Fatima Zohra Smaili]的文章
[Shuye Tian]的文章
[Ambrish Roy]的文章
必应学术
必应学术中相似的文章
[Fatima Zohra Smaili]的文章
[Shuye Tian]的文章
[Ambrish Roy]的文章
相关权益政策
暂无数据
收藏/分享
文件名: maina.pdf
格式: Adobe PDF
文件名: maina.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。