中文版 | English
题名

Exploiting Generative Models for Performance Predictions of 3D Car Designs

作者
DOI
发表日期
2021
会议名称
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
ISBN
978-1-7281-9049-5
会议录名称
页码
1-9
会议日期
DEC 05-07, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In automotive digital development, engineers utilize multiple virtual prototyping tools to design and assess the performance of 3D shapes. However, accurate performance simulations are computationally expensive and time-consuming, which may be prohibitive for design optimization tasks. To address this challenge, we envision a 3D design assistance system for design exploration with performance assessment in the automotive domain. Recent advances in deep learning methods for learning geometric data are a promising step towards realizing such systems. Deep learning-based (variational) autoencoder models have been used for learning and compressing 3D data allowing engineers to generate low-dimensional representations of 3D designs. Finding representations in a data-driven fashion results in representations that are agnostic to downstream tasks performed on these representations and are believed to capture relevant design features. In this paper, we evaluate whether such data-driven representations contain relevant information about the input data and whether representations are meaningful in performance prediction tasks for the input data. We use machine learning-based surrogate models to predict the performances of car shapes based on the low-dimensional representation learned by 3D point cloud (variational) autoencoders. Furthermore, we exploit the stochastic nature of the representation learned by variational autoencoders to augment the training data for our surrogate models, since the limited amount of data is usually a challenge for surrogate modeling in engineering. We demonstrate that augmenting training with generated shapes improves prediction accuracy. In sum, we find that geometric deep learning approaches offer powerful tools to support the engineering design process.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000824464300214
EI入藏号
20221011761212
EI主题词
Deep learning ; Forecasting ; Regression analysis ; Signal encoding ; Stochastic models ; Vehicle performance
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Automobiles:662.1 ; Heavy Duty Motor Vehicles:663.1 ; Information Theory and Signal Processing:716.1 ; Control Systems:731.1 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Systems Science:961
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660034
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257330
专题工学院_计算机科学与工程系
作者单位
1.Honda Research Institute Europe GmbH
2.University of Birmingham
3.Leiden Institute of Advanced Computer Science (LIACS)
4.Department of Computer Science and Engineering, Southern University of Science and Technology
推荐引用方式
GB/T 7714
Sneha Saha,Thiago Rios,Leandro Minku,et al. Exploiting Generative Models for Performance Predictions of 3D Car Designs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-9.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sneha Saha]的文章
[Thiago Rios]的文章
[Leandro Minku]的文章
百度学术
百度学术中相似的文章
[Sneha Saha]的文章
[Thiago Rios]的文章
[Leandro Minku]的文章
必应学术
必应学术中相似的文章
[Sneha Saha]的文章
[Thiago Rios]的文章
[Leandro Minku]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。