题名 | Evolutionary optimization with hierarchical surrogates |
作者 | |
通讯作者 | Sun, Tao |
发表日期 | 2019-06
|
DOI | |
发表期刊 | |
ISSN | 2210-6502
|
EISSN | 2210-6510
|
卷号 | 47页码:21-32 |
摘要 | The use of surrogate models provides an effective means for evolutionary algorithms (EAs) to reduce the number of fitness evaluations when handling computationally expensive problems. To build surrogate models, a modeling technique (e.g. ANN, SVM, RBF, etc.) needs to be decided first. Previous studies have shown that the choice of modeling technique can highly affect the performance of the surrogate model-assisted evolutionary search. However, one modeling technique might perform differently on different problem landscapes. Without any prior knowledge about the optimization problem to solve, it is very hard to decide which modeling technique to use. To address this issue, in this paper, we propose a novel modeling technique selection strategy in the framework of memetic algorithm (MA). The proposed strategy employs a hierarchical structure of surrogate models and can automatically choose a modeling technique from a pre-specified set of modeling techniques during the optimization process. A mathematic analysis is given to show the effectiveness of the proposed method. Moreover, experimental studies are conducted to compare the proposed method with two other modeling technique selection methods as well as three state-of-the-art optimization algorithms. Experimental results on the used benchmark test functions demonstrate the superiority of the proposed method. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000474313300003
|
出版者 | |
EI入藏号 | 20191306715902
|
EI主题词 | Benchmarking
; Optimization
; Problem solving
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25734 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Univ Key Lab Evolving Intelligent Syst Guangdong, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China 2.Huawei Technol, Shenzhen 518129, Guangdong, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lu, Xiaofen,Sun, Tao,Tang, Ke. Evolutionary optimization with hierarchical surrogates[J]. Swarm and Evolutionary Computation,2019,47:21-32.
|
APA |
Lu, Xiaofen,Sun, Tao,&Tang, Ke.(2019).Evolutionary optimization with hierarchical surrogates.Swarm and Evolutionary Computation,47,21-32.
|
MLA |
Lu, Xiaofen,et al."Evolutionary optimization with hierarchical surrogates".Swarm and Evolutionary Computation 47(2019):21-32.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Lu-2019-Evolutionary(1381KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论