中文版 | English
题名

Evolutionary optimization with hierarchical surrogates

作者
通讯作者Sun, Tao
发表日期
2019-06
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号47页码:21-32
摘要
The use of surrogate models provides an effective means for evolutionary algorithms (EAs) to reduce the number of fitness evaluations when handling computationally expensive problems. To build surrogate models, a modeling technique (e.g. ANN, SVM, RBF, etc.) needs to be decided first. Previous studies have shown that the choice of modeling technique can highly affect the performance of the surrogate model-assisted evolutionary search. However, one modeling technique might perform differently on different problem landscapes. Without any prior knowledge about the optimization problem to solve, it is very hard to decide which modeling technique to use. To address this issue, in this paper, we propose a novel modeling technique selection strategy in the framework of memetic algorithm (MA). The proposed strategy employs a hierarchical structure of surrogate models and can automatically choose a modeling technique from a pre-specified set of modeling techniques during the optimization process. A mathematic analysis is given to show the effectiveness of the proposed method. Moreover, experimental studies are conducted to compare the proposed method with two other modeling technique selection methods as well as three state-of-the-art optimization algorithms. Experimental results on the used benchmark test functions demonstrate the superiority of the proposed method.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000474313300003
出版者
EI入藏号
20191306715902
EI主题词
Benchmarking ; Optimization ; Problem solving
EI分类号
Optimization Techniques:921.5
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25734
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Univ Key Lab Evolving Intelligent Syst Guangdong, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
2.Huawei Technol, Shenzhen 518129, Guangdong, Peoples R China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lu, Xiaofen,Sun, Tao,Tang, Ke. Evolutionary optimization with hierarchical surrogates[J]. Swarm and Evolutionary Computation,2019,47:21-32.
APA
Lu, Xiaofen,Sun, Tao,&Tang, Ke.(2019).Evolutionary optimization with hierarchical surrogates.Swarm and Evolutionary Computation,47,21-32.
MLA
Lu, Xiaofen,et al."Evolutionary optimization with hierarchical surrogates".Swarm and Evolutionary Computation 47(2019):21-32.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Lu-2019-Evolutionary(1381KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaofen]的文章
[Sun, Tao]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaofen]的文章
[Sun, Tao]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaofen]的文章
[Sun, Tao]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。