中文版 | English
题名

FREE: Feature Refinement for Generalized Zero-Shot Learning

作者
通讯作者Xinge YOU
DOI
发表日期
2021
会议名称
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
ISSN
1550-5499
ISBN
978-1-6654-2813-2
会议录名称
页码
122-131
会议日期
2021
会议地点
Virtual-only Conference
摘要

Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models trained on ImageNet
alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks. Such a bias inevitably results in poor-quality visual features for GZSL tasks, which potentially limits the recognition performance on both seen and unseen classes. In this paper, we propose a simple yet effective GZSL method, termed feature refinement for generalized
zero-shot learning (FREE), to tackle the above problem. FREE employs a feature refinement (FR) module that incorporates semantic→visual mapping into a unified generative model to refine the visual features of seen and unseenclass samples. Furthermore, we propose a self-adaptive margin center loss (SAMC-loss) that cooperates with a semantic cycle-consistency loss to guide FR to learn class- and semantically-relevant representations, and concatenate the features in FR to extract the fully refined features. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of FREE over its baseline and current state-of-the-art methods. The code is available at https://github.com/shiming-chen/FREE

关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20221511950360
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9710023
引用统计
被引频次[WOS]:115
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257492
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Huazhong University of Science and Technology (HUST), China
2.Southern University of Science and Technology (SUSTech), China
3.Inception Institute of Artificial Intelligence (IIAI), UAE
推荐引用方式
GB/T 7714
Shiming Chen,Wenjie Wang,Beihao Xia,et al. FREE: Feature Refinement for Generalized Zero-Shot Learning[C],2021:122-131.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Chen_FREE_Feature_Re(4268KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shiming Chen]的文章
[Wenjie Wang]的文章
[Beihao Xia]的文章
百度学术
百度学术中相似的文章
[Shiming Chen]的文章
[Wenjie Wang]的文章
[Beihao Xia]的文章
必应学术
必应学术中相似的文章
[Shiming Chen]的文章
[Wenjie Wang]的文章
[Beihao Xia]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Chen_FREE_Feature_Refinement_for_Generalized_Zero-Shot_Learning_ICCV_2021_paper.pdf
格式: Adobe PDF
文件名: Chen_FREE_Feature_Refinement_for_Generalized_Zero-Shot_Learning_ICCV_2021_paper.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。