中文版 | English
题名

Saliency-Associated Object Tracking

作者
通讯作者Wenjie Pei; Zhenyu He
DOI
发表日期
2021
会议名称
ICCV
ISSN
1550-5499
ISBN
978-1-6654-2813-2
会议录名称
页码
9846-9855
会议日期
2021
会议地点
Virtual-only Conference
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Most existing trackers based on deep learning perform tracking in a holistic strategy, which aims to learn deep representations of the whole target for localizing the target. It is arduous for such methods to track targets with various appearance variations. To address this limitation, another type of methods adopts a part-based tracking strategy which divides the target into equal patches and tracks all these patches in parallel. The target state is inferred by summarizing the tracking results of these patches. A potential limitation of such trackers is that not all patches are equally informative for tracking. Some patches that are not discriminative may have adverse effects. In this paper, we propose to track the salient local parts of the target that are discriminative for tracking. In particular, we propose a fine-grained saliency mining module to capture the local saliencies. Further, we design a saliency-association modeling module to associate the captured saliencies together to learn effective correlation representations between the exemplar and the search image for state estimation. Extensive experiments on five diverse datasets demonstrate that the proposed method performs favorably against state-of-the-art trackers

关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["U2013210",62006060,62002241] ; Shenzhen Research Council[JCYJ20210324120202006] ; Special Research project on COVID-19 Prevention and Control of Guangdong Province[2020KZDZDX1227] ; Shenzhen Stable Support Plan Fund for Universities[GXWD20201230155427003-20200824125730001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000798743208058
EI入藏号
20221511951842
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9711190
引用统计
被引频次[WOS]:76
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257496
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Harbin Institute of Technology, Shenzhen
2.Peng Cheng Laboratory
3.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Zikun Zhou,Wenjie Pei,Xin Li,et al. Saliency-Associated Object Tracking[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:9846-9855.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zhou_Saliency-Associ(2442KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zikun Zhou]的文章
[Wenjie Pei]的文章
[Xin Li]的文章
百度学术
百度学术中相似的文章
[Zikun Zhou]的文章
[Wenjie Pei]的文章
[Xin Li]的文章
必应学术
必应学术中相似的文章
[Zikun Zhou]的文章
[Wenjie Pei]的文章
[Xin Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。