题名 | Saliency-Associated Object Tracking |
作者 | |
通讯作者 | Wenjie Pei; Zhenyu He |
DOI | |
发表日期 | 2021
|
会议名称 | ICCV
|
ISSN | 1550-5499
|
ISBN | 978-1-6654-2813-2
|
会议录名称 | |
页码 | 9846-9855
|
会议日期 | 2021
|
会议地点 | Virtual-only Conference
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Most existing trackers based on deep learning perform tracking in a holistic strategy, which aims to learn deep representations of the whole target for localizing the target. It is arduous for such methods to track targets with various appearance variations. To address this limitation, another type of methods adopts a part-based tracking strategy which divides the target into equal patches and tracks all these patches in parallel. The target state is inferred by summarizing the tracking results of these patches. A potential limitation of such trackers is that not all patches are equally informative for tracking. Some patches that are not discriminative may have adverse effects. In this paper, we propose to track the salient local parts of the target that are discriminative for tracking. In particular, we propose a fine-grained saliency mining module to capture the local saliencies. Further, we design a saliency-association modeling module to associate the captured saliencies together to learn effective correlation representations between the exemplar and the search image for state estimation. Extensive experiments on five diverse datasets demonstrate that the proposed method performs favorably against state-of-the-art trackers |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["U2013210",62006060,62002241]
; Shenzhen Research Council[JCYJ20210324120202006]
; Special Research project on COVID-19 Prevention and Control of Guangdong Province[2020KZDZDX1227]
; Shenzhen Stable Support Plan Fund for Universities[GXWD20201230155427003-20200824125730001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000798743208058
|
EI入藏号 | 20221511951842
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9711190 |
引用统计 |
被引频次[WOS]:76
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257496 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Harbin Institute of Technology, Shenzhen 2.Peng Cheng Laboratory 3.Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Zikun Zhou,Wenjie Pei,Xin Li,et al. Saliency-Associated Object Tracking[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:9846-9855.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Zhou_Saliency-Associ(2442KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论