题名 | Brain Image Synthesis with Unsupervised Multivariate Canonical CSC$\ell_4$Net |
作者 | |
通讯作者 | Feng Zheng |
DOI | |
发表日期 | 2021-11-13
|
会议名称 | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR
|
ISSN | 2575-7075
|
EISSN | 1063-6919
|
ISBN | 978-1-6654-4510-8
|
会议录名称 | |
页码 | 5877-5886
|
会议日期 | 20-25 June 2021
|
会议地点 | Nashville, TN, USA
|
会议举办国 | USA
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Recent advances in neuroscience have highlighted the effectiveness of multi-modal medical data for investigating certain pathologies and understanding human cognition. However, obtaining full sets of different modalities is limited by various factors, such as long acquisition times, high examination costs and artifact suppression. In addition, the complexity, high dimensionality and heterogeneity of neuroimaging data remains another key challenge in leveraging existing randomized scans effectively, as data of the same modality is often measured differently by different machines. There is a clear need to go beyond the traditional imaging-dependent process and synthesize anatomically specific target-modality data from a source in-put. In this paper, we propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSCℓ 4 Net. Through an initial unification of intra-modal data in the feature maps and multivariate canonical adaptation, CSC ℓ 4 Net facilitates feature-level mutual transformation. The positive definite Riemannian manifold-penalized data fidelity term further enables CSCℓ 4 Net to re-construct missing measurements according to transformed features. Finally, the maximization ℓ 4 -norm boils down to a computationally efficient optimization problem. Extensive experiments validate the ability and robustness of our CSC ℓ 4 Net compared to the state-of-the-art methods on multiple datasets. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61972188]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000739917306009
|
EI入藏号 | 20220411510347
|
EI主题词 | Metadata
; Modal analysis
|
EI分类号 | Biomedical Engineering:461.1
; Imaging Techniques:746
; Mathematics:921
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9578578 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257499 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Malong LLC 2.Southern University of Science and Technology 3.Inception Institute of Artificial Intelligence |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yawen Huang,Feng Zheng,Danyang Wang,et al. Brain Image Synthesis with Unsupervised Multivariate Canonical CSC$\ell_4$Net[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE,2021:5877-5886.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Brain_Image_Synthesi(1455KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论