中文版 | English
题名

Brain Image Synthesis with Unsupervised Multivariate Canonical CSC$\ell_4$Net

作者
通讯作者Feng Zheng
DOI
发表日期
2021-11-13
会议名称
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR
ISSN
2575-7075
EISSN
1063-6919
ISBN
978-1-6654-4510-8
会议录名称
页码
5877-5886
会议日期
20-25 June 2021
会议地点
Nashville, TN, USA
会议举办国
USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

Recent advances in neuroscience have highlighted the effectiveness of multi-modal medical data for investigating certain pathologies and understanding human cognition. However, obtaining full sets of different modalities is limited by various factors, such as long acquisition times, high examination costs and artifact suppression. In addition, the complexity, high dimensionality and heterogeneity of neuroimaging data remains another key challenge in leveraging existing randomized scans effectively, as data of the same modality is often measured differently by different machines. There is a clear need to go beyond the traditional imaging-dependent process and synthesize anatomically specific target-modality data from a source in-put. In this paper, we propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSCℓ 4 Net. Through an initial unification of intra-modal data in the feature maps and multivariate canonical adaptation, CSC ℓ 4 Net facilitates feature-level mutual transformation. The positive definite Riemannian manifold-penalized data fidelity term further enables CSCℓ 4 Net to re-construct missing measurements according to transformed features. Finally, the maximization ℓ 4 -norm boils down to a computationally efficient optimization problem. Extensive experiments validate the ability and robustness of our CSC ℓ 4 Net compared to the state-of-the-art methods on multiple datasets.

关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61972188]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000739917306009
EI入藏号
20220411510347
EI主题词
Metadata ; Modal analysis
EI分类号
Biomedical Engineering:461.1 ; Imaging Techniques:746 ; Mathematics:921
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9578578
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257499
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Malong LLC
2.Southern University of Science and Technology
3.Inception Institute of Artificial Intelligence
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yawen Huang,Feng Zheng,Danyang Wang,et al. Brain Image Synthesis with Unsupervised Multivariate Canonical CSC$\ell_4$Net[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE,2021:5877-5886.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Brain_Image_Synthesi(1455KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Danyang Wang]的文章
百度学术
百度学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Danyang Wang]的文章
必应学术
必应学术中相似的文章
[Yawen Huang]的文章
[Feng Zheng]的文章
[Danyang Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。