中文版 | English
题名

An improved multi-object classification algorithm for visual SLAM under dynamic environment

作者
通讯作者Wen, Shuhuan
发表日期
2021-11-01
DOI
发表期刊
ISSN
1861-2776
EISSN
1861-2784
卷号15页码:39-55
摘要
In this paper, a novel dynamic multi-object classification method is proposed based on real-time localization of a robot equipped with a vision sensor that captures a sparse three-dimensional environment. Specifically, we build upon ORB-SLAM2 and improve its formulation to better handle moving objects in a dynamic environment. We propose a feature classification algorithm for ORB (oriented FAST and rotated BRIEF) features in complex environments. Based on inter-frame texture constraints, we add the reprojection error algorithm, which can reduce the influence of illumination and dynamic objects on the simultaneous localization and mapping (SLAM) algorithm. We then propose a new dynamic initialization strategy and apply the proposed feature classification algorithm to the ORB-SLAM2 tracking thread. For real-world implementations, we focus on the robustness and real-time performance of dynamic target segmentation simultaneously, which cannot be satisfied by existing geometric segmentation and semantic segmentation methods. From an engineering point of view, the proposed work can quickly separate dynamic feature points based on traditional methods, which makes the proposed algorithm has better real time in practical applications. We thoroughly evaluate our approach on the TUM and KITTI benchmark database and on a real environment using the Turtlebot platform equipped with a Bumblebee camera. The experimental results indicate that the proposed method is more robust and accurate than current state-of-the-art methods in different environments.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China (NSFC)[61773333] ; National Natural Science Foundation of China and the Royal Society of Britain (NSFC-RS)[62111530148] ; China Scholarship Council (CSC)[201908130016]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000723544900001
出版者
EI入藏号
20214811254623
EI主题词
Classification (of information) ; Indoor positioning systems ; Robotics ; Semantic Segmentation ; Semantics
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Robotics:731.5 ; Information Sources and Analysis:903.1
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257524
专题工学院_电子与电气工程系
作者单位
1.Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
2.Yanshan Univ, Engn Res Ctr, Minist Educ Intelligent Control Syst & Intelligen, Qinhuangdao, Hebei, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wen, Shuhuan,Liu, Xin,Wang, Zhe,et al. An improved multi-object classification algorithm for visual SLAM under dynamic environment[J]. Intelligent Service Robotics,2021,15:39-55.
APA
Wen, Shuhuan,Liu, Xin,Wang, Zhe,Zhang, Hong,Zhang, Zhishang,&Tian, Wenbo.(2021).An improved multi-object classification algorithm for visual SLAM under dynamic environment.Intelligent Service Robotics,15,39-55.
MLA
Wen, Shuhuan,et al."An improved multi-object classification algorithm for visual SLAM under dynamic environment".Intelligent Service Robotics 15(2021):39-55.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wen, Shuhuan]的文章
[Liu, Xin]的文章
[Wang, Zhe]的文章
百度学术
百度学术中相似的文章
[Wen, Shuhuan]的文章
[Liu, Xin]的文章
[Wang, Zhe]的文章
必应学术
必应学术中相似的文章
[Wen, Shuhuan]的文章
[Liu, Xin]的文章
[Wang, Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。