题名 | Path-optimized nonadiabatic geometric quantum computation on superconducting qubits |
作者 | |
通讯作者 | Chen, Tao; Xue, Zheng-Yuan |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 2058-9565
|
卷号 | 7期号:1 |
摘要 | Quantum computation based on nonadiabatic geometric phases has attracted a broad range of interests, due to its fast manipulation and inherent noise resistance. However, it is limited to some special evolution paths, and the gate-times are typically longer than conventional dynamical gates, resulting in weakening of robustness and more infidelities of the implemented geometric gates. Here, we propose a path-optimized scheme for geometric quantum computation (GQC) on superconducting transmon qubits, where high-fidelity and robust universal nonadiabatic geometric gates can be implemented, based on conventional experimental setups. Specifically, we find that, by selecting appropriate evolution paths, the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors. Numerical simulations show that the fidelities for single-qubit geometric phase, pi/8 and Hadamard gates can be obtained as 99.93%, 99.95% and 99.95%, respectively. Remarkably, the fidelity for two-qubit control-phase gate can be as high as 99.87%. Therefore, our scheme provides a new perspective for GQC, making it more promising in the application of large-scale fault-tolerant quantum computation. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | key-area research and Development Program of GuangDong Province[2018B030326001]
; National Natural Science Foundation of China[11874156]
; Guangdong Provincial Key Laboratory of Quantum Science and Engineering[2019B121203002]
; Science and Technology Program of Guangzhou[2019050001]
|
WOS研究方向 | Physics
|
WOS类目 | Quantum Science & Technology
; Physics, Multidisciplinary
|
WOS记录号 | WOS:000722728700001
|
出版者 | |
EI入藏号 | 20220211452909
|
EI主题词 | Logic gates
; Quantum optics
; Qubits
; Timing circuits
|
EI分类号 | Pulse Circuits:713.4
; Logic Elements:721.2
; Light, Optics and Optical Devices:741
; Light/Optics:741.1
; Nanotechnology:761
; Mathematics:921
; Quantum Theory; Quantum Mechanics:931.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257525 |
专题 | 量子科学与工程研究院 |
作者单位 | 1.South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China 2.South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China 3.South China Normal Univ, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China 4.South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China 5.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Ding, Cheng-Yun,Ji, Li-Na,Chen, Tao,et al. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits[J]. Quantum Science and Technology,2022,7(1).
|
APA |
Ding, Cheng-Yun,Ji, Li-Na,Chen, Tao,&Xue, Zheng-Yuan.(2022).Path-optimized nonadiabatic geometric quantum computation on superconducting qubits.Quantum Science and Technology,7(1).
|
MLA |
Ding, Cheng-Yun,et al."Path-optimized nonadiabatic geometric quantum computation on superconducting qubits".Quantum Science and Technology 7.1(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论