题名 | Attention-oriented Brain Storm Optimization for Multimodal Optimization Problems |
作者 | |
通讯作者 | Yang, Jian |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE Congress on Evolutionary Computation (IEEE CEC)
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 1968-1975
|
会议日期 | JUN 28-JUL 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Population-based methods are often used to solve multimodal optimization problems. By combining niching or clustering strategy, the state-of-the-art approaches generally divide the population into several subpopulations to find multiple solutions for a problem at hand. However, these methods only guided by the fitness value during iterations, which are suffering from determining the number of subpopulations, i.e., the number of niche areas or clusters. To compensate for this drawback, this paper presents an Attention-oriented Brain Storm Optimization (ABSO) method that introduces the attention mechanism into a relatively new swarm intelligence algorithm, i.e., Brain Storm Optimization (BSO). By converting the objective space from the fitness space into "attention" space, the individuals are clustered and updated iteratively according to their salient values. Rather than converge to a single global optimum, the proposed method can guide the search procedure to converge to multiple "salient" solutions. The preliminary results show that the proposed method can locate multiple global and local optimal solutions of several multimodal benchmark functions. The proposed method needs less prior knowledge of the problem and can automatically converge to multiple optimums guided by the attention mechanism, which has excellent potential for further development. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee Foundation of Shenzhen["JCYJ20200109141235597","ZDSYS201703031748284"]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100248
|
EI入藏号 | 20220711650727
|
EI主题词 | Evolutionary algorithms
; Iterative methods
; Optimization
|
EI分类号 | Precipitation:443.3
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504871 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257530 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yang, Jian,Shi, Yuhui. Attention-oriented Brain Storm Optimization for Multimodal Optimization Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1968-1975.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论