中文版 | English
题名

Attention-oriented Brain Storm Optimization for Multimodal Optimization Problems

作者
通讯作者Yang, Jian
DOI
发表日期
2021
会议名称
IEEE Congress on Evolutionary Computation (IEEE CEC)
ISBN
978-1-7281-8394-7
会议录名称
页码
1968-1975
会议日期
JUN 28-JUL 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Population-based methods are often used to solve multimodal optimization problems. By combining niching or clustering strategy, the state-of-the-art approaches generally divide the population into several subpopulations to find multiple solutions for a problem at hand. However, these methods only guided by the fitness value during iterations, which are suffering from determining the number of subpopulations, i.e., the number of niche areas or clusters. To compensate for this drawback, this paper presents an Attention-oriented Brain Storm Optimization (ABSO) method that introduces the attention mechanism into a relatively new swarm intelligence algorithm, i.e., Brain Storm Optimization (BSO). By converting the objective space from the fitness space into "attention" space, the individuals are clustered and updated iteratively according to their salient values. Rather than converge to a single global optimum, the proposed method can guide the search procedure to converge to multiple "salient" solutions. The preliminary results show that the proposed method can locate multiple global and local optimal solutions of several multimodal benchmark functions. The proposed method needs less prior knowledge of the problem and can automatically converge to multiple optimums guided by the attention mechanism, which has excellent potential for further development.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen["JCYJ20200109141235597","ZDSYS201703031748284"]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100248
EI入藏号
20220711650727
EI主题词
Evolutionary algorithms ; Iterative methods ; Optimization
EI分类号
Precipitation:443.3 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504871
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257530
专题工学院_计算机科学与工程系
作者单位
Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yang, Jian,Shi, Yuhui. Attention-oriented Brain Storm Optimization for Multimodal Optimization Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1968-1975.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Jian]的文章
[Shi, Yuhui]的文章
百度学术
百度学术中相似的文章
[Yang, Jian]的文章
[Shi, Yuhui]的文章
必应学术
必应学术中相似的文章
[Yang, Jian]的文章
[Shi, Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。