题名 | Large-scale Multiobjective Optimization via Problem Decomposition and Reformulation |
作者 | |
通讯作者 | Li, Lianghao |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE Congress on Evolutionary Computation (IEEE CEC)
|
ISBN | 978-1-7281-8394-7
|
会议录名称 | |
页码 | 2149-2155
|
会议日期 | JUN 28-JUL 01, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Large-scale multiobjective optimization problems (LSMOPs) are challenging for existing approaches due to the complexity of objective functions and the massive volume of decision space. Some large-scale multiobjective evolutionary algorithms (LSMOEAs) have recently been proposed, which have shown their effectiveness in solving some benchmarks and real-world applications. They merely focus on handling the massive volume of decision space and ignore the complexity of LSMOPs in terms of objective functions. The complexity issue is also important since the complexity grows along with the increment in the number of decision variables. Our previous study proposed a framework to accelerate evolutionary large-scale multiobjective optimization via problem reformulation for handling largescale decision variables. Here, we investigate the effectiveness of LSMOF combined with decomposition-based MOEA (MOEA/D), aiming to handle the complexity of LSMOPs in both the decision and objective spaces. Specifically, MOEA/D is embedded in LSMOF via two different strategies, and the proposed algorithm is tested on various benchmark LSMOPs. Experimental results indicate the encouraging performance improvement benefited from the solution of the complexity issue in large-scale multi-objective optimization. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61772214,61903178,61906081,"U20A20306"]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703866100271
|
EI入藏号 | 20220711650655
|
EI主题词 | Benchmarking
; Decision making
; Evolutionary algorithms
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504820 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257531 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Informat Proc & Intelligent Control, Educ Minist China, Wuhan, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Brain Inspired Intelligent, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Li, Lianghao,He, Cheng,Cheng, Ran,et al. Large-scale Multiobjective Optimization via Problem Decomposition and Reformulation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:2149-2155.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论