中文版 | English
题名

Large-scale Multiobjective Optimization via Problem Decomposition and Reformulation

作者
通讯作者Li, Lianghao
DOI
发表日期
2021
会议名称
IEEE Congress on Evolutionary Computation (IEEE CEC)
ISBN
978-1-7281-8394-7
会议录名称
页码
2149-2155
会议日期
JUN 28-JUL 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Large-scale multiobjective optimization problems (LSMOPs) are challenging for existing approaches due to the complexity of objective functions and the massive volume of decision space. Some large-scale multiobjective evolutionary algorithms (LSMOEAs) have recently been proposed, which have shown their effectiveness in solving some benchmarks and real-world applications. They merely focus on handling the massive volume of decision space and ignore the complexity of LSMOPs in terms of objective functions. The complexity issue is also important since the complexity grows along with the increment in the number of decision variables. Our previous study proposed a framework to accelerate evolutionary large-scale multiobjective optimization via problem reformulation for handling largescale decision variables. Here, we investigate the effectiveness of LSMOF combined with decomposition-based MOEA (MOEA/D), aiming to handle the complexity of LSMOPs in both the decision and objective spaces. Specifically, MOEA/D is embedded in LSMOF via two different strategies, and the proposed algorithm is tested on various benchmark LSMOPs. Experimental results indicate the encouraging performance improvement benefited from the solution of the complexity issue in large-scale multi-objective optimization.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61772214,61903178,61906081,"U20A20306"]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100271
EI入藏号
20220711650655
EI主题词
Benchmarking ; Decision making ; Evolutionary algorithms
EI分类号
Management:912.2 ; Optimization Techniques:921.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504820
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257531
专题工学院_计算机科学与工程系
作者单位
1.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Informat Proc & Intelligent Control, Educ Minist China, Wuhan, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Brain Inspired Intelligent, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Li, Lianghao,He, Cheng,Cheng, Ran,et al. Large-scale Multiobjective Optimization via Problem Decomposition and Reformulation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:2149-2155.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
百度学术
百度学术中相似的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
必应学术
必应学术中相似的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。