中文版 | English
题名

Multiple-Preys Pursuit based on Biquadratic Assignment Problem

作者
通讯作者Shi, Yuhui
DOI
发表日期
2021
会议名称
IEEE Congress on Evolutionary Computation (IEEE CEC)
ISBN
978-1-7281-8394-7
会议录名称
页码
1585-1592
会议日期
JUN 28-JUL 01, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The multiple-preys pursuit (MPP) is the adversarial game between predators and preys. If the capture of a prey is defined as that it cannot move anymore due to the surrounding of predators, there are two kinds of task allocations. One is about assigning which prey to which group of predators so that all preys can be captured. The other is about assigning which capturing position to which predator to encircle the prey simultaneously. In this paper, the MPP is modeled as a dynamic optimization problem and each its time step is solved in two stages. Firstly, the first kind of task allocation problem is modeled as the biquadratic assignment problem (BiQAP) and a MPP fitness function is proposed for the evaluation of such BiQAP task allocations. In this way, the MPP is transformed to several single-prey pursuit (SPP) problems. Secondly, for each SPP, we extend the coordinated SPP strategy CCPSO-R (cooperative coevolutionary particle swarm optimization for robots) to its parallel version as PCCPSO-R to enable the parallel implicit capturing position allocating by parallel observation, decision making, and moving of predators. Through experiments of the current BiQAP solvers on the task allocation, we improve the best one of them in statistic based on the domain knowledge. Moreover, the advantages of PCCPSO-R in the capturing efficiency over CCPSO-R is testified in the MPP experiments.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen["ZDSYS201703031748284","JCYJ20200109141235597"]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703866100200
EI入藏号
20220711650683
EI主题词
Decision making ; Particle swarm optimization (PSO)
EI分类号
Computer Software, Data Handling and Applications:723 ; Management:912.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9504823
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257532
专题工学院_计算机科学与工程系
作者单位
1.Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
2.Harbin Inst Technol, Harbin, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Sun, Lijun,Lyu, Chao,Shi, Yuhui,et al. Multiple-Preys Pursuit based on Biquadratic Assignment Problem[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1585-1592.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Lijun]的文章
[Lyu, Chao]的文章
[Shi, Yuhui]的文章
百度学术
百度学术中相似的文章
[Sun, Lijun]的文章
[Lyu, Chao]的文章
[Shi, Yuhui]的文章
必应学术
必应学术中相似的文章
[Sun, Lijun]的文章
[Lyu, Chao]的文章
[Shi, Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。