中文版 | English
题名

Learning 3D Shape Feature for Texture-insensitive Person Re-identification

作者
通讯作者WEI-SHI ZHENG
共同第一作者Xinyang Jiang; Fudong Wang
DOI
发表日期
2021-11-13
会议名称
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
2575-7075
EISSN
1063-6919
ISBN
978-1-6654-4510-8
会议录名称
页码
8146-8155
会议日期
20-25 June 2021
会议地点
Nashville, TN, USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

It is well acknowledged that person re-identification (person ReID) highly relies on visual texture information like clothing. Despite significant progress has been made in recent years, texture-confusing situations like clothing changing and persons wearing the same clothes receive little attention from most existing ReID methods. In this paper, rather than relying on texture based information, we propose to improve the robustness of person ReID against clothing texture by exploiting the information of a person's 3D shape. Existing shape learning schemas for person ReID either ignore the 3D information of a person, or require extra physical devices to collect 3D source data. Differently, we propose a novel ReID learning framework that directly extracts a texture-insensitive 3D shape embedding from a 2D image by adding 3D body reconstruction as an auxiliary task and regularization, called 3D Shape Learning (3DSL). The 3D reconstruction based regularization forces the ReID model to decouple the 3D shape information from the visual texture, and acquire discriminative 3D shape ReID features. To solve the problem of lacking 3D ground truth, we design an adversarial self-supervised projection (ASSP) model, performing 3D reconstruction without ground truth. Extensive experiments on common ReID datasets and texture-confusing datasets validate the effectiveness of our model.

关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
NSFC["U1911401","U1811461"] ; Guangdong NSF Project["2020B1515120085","2018B030312002"] ; Guangzhou Research Project[201902010037] ; Research Projects of Zhejiang Lab[2019KD0AB03] ; Key-Area Research and Development Program of Guangzhou[202007030004]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000739917308037
EI入藏号
20220411509484
EI主题词
3D modeling ; Computer vision ; Image reconstruction ; Learning systems ; Three dimensional computer graphics
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9578604
引用统计
被引频次[WOS]:64
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257543
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.School of Computer Science and Engineering, Sun Yat-sen University, China
2.Peng Cheng Laboratory, Shenzhen, China
3.Youtu Lab, Tencent
4.CSE, Southern University of Science and Technology
5.Pazhou Lab, Guangzhou, China
推荐引用方式
GB/T 7714
Jiaxing Chen,Xinyang Jiang,Fudong Wang,et al. Learning 3D Shape Feature for Texture-insensitive Person Re-identification[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE,2021:8146-8155.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Learning_3D_Shape_Fe(2799KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiaxing Chen]的文章
[Xinyang Jiang]的文章
[Fudong Wang]的文章
百度学术
百度学术中相似的文章
[Jiaxing Chen]的文章
[Xinyang Jiang]的文章
[Fudong Wang]的文章
必应学术
必应学术中相似的文章
[Jiaxing Chen]的文章
[Xinyang Jiang]的文章
[Fudong Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。