题名 | Learning 3D Shape Feature for Texture-insensitive Person Re-identification |
作者 | |
通讯作者 | WEI-SHI ZHENG |
共同第一作者 | Xinyang Jiang; Fudong Wang |
DOI | |
发表日期 | 2021-11-13
|
会议名称 | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
|
ISSN | 2575-7075
|
EISSN | 1063-6919
|
ISBN | 978-1-6654-4510-8
|
会议录名称 | |
页码 | 8146-8155
|
会议日期 | 20-25 June 2021
|
会议地点 | Nashville, TN, USA
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | It is well acknowledged that person re-identification (person ReID) highly relies on visual texture information like clothing. Despite significant progress has been made in recent years, texture-confusing situations like clothing changing and persons wearing the same clothes receive little attention from most existing ReID methods. In this paper, rather than relying on texture based information, we propose to improve the robustness of person ReID against clothing texture by exploiting the information of a person's 3D shape. Existing shape learning schemas for person ReID either ignore the 3D information of a person, or require extra physical devices to collect 3D source data. Differently, we propose a novel ReID learning framework that directly extracts a texture-insensitive 3D shape embedding from a 2D image by adding 3D body reconstruction as an auxiliary task and regularization, called 3D Shape Learning (3DSL). The 3D reconstruction based regularization forces the ReID model to decouple the 3D shape information from the visual texture, and acquire discriminative 3D shape ReID features. To solve the problem of lacking 3D ground truth, we design an adversarial self-supervised projection (ASSP) model, performing 3D reconstruction without ground truth. Extensive experiments on common ReID datasets and texture-confusing datasets validate the effectiveness of our model. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | NSFC["U1911401","U1811461"]
; Guangdong NSF Project["2020B1515120085","2018B030312002"]
; Guangzhou Research Project[201902010037]
; Research Projects of Zhejiang Lab[2019KD0AB03]
; Key-Area Research and Development Program of Guangzhou[202007030004]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000739917308037
|
EI入藏号 | 20220411509484
|
EI主题词 | 3D modeling
; Computer vision
; Image reconstruction
; Learning systems
; Three dimensional computer graphics
|
EI分类号 | Data Processing and Image Processing:723.2
; Computer Applications:723.5
; Vision:741.2
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9578604 |
引用统计 |
被引频次[WOS]:64
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257543 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science and Engineering, Sun Yat-sen University, China 2.Peng Cheng Laboratory, Shenzhen, China 3.Youtu Lab, Tencent 4.CSE, Southern University of Science and Technology 5.Pazhou Lab, Guangzhou, China |
推荐引用方式 GB/T 7714 |
Jiaxing Chen,Xinyang Jiang,Fudong Wang,et al. Learning 3D Shape Feature for Texture-insensitive Person Re-identification[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE,2021:8146-8155.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Learning_3D_Shape_Fe(2799KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论