题名 | Multibranch Learning for Angiodysplasia Segmentation with Attention-Guided Networks and Domain Adaptation |
作者 | |
通讯作者 | Xiaochun Mai |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Robotics and Automation
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-9078-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 12373-12379
|
会议日期 | 2021.5.31-2021.6.4
|
会议地点 | Xi'an, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | As a common cause of anemia and gastrointestinal bleeding, angiodysplasia (AD) diagnosis in wireless capsule endoscopy (WCE) images is important in clinical. Current manual review requires undivided concentration of the gastroenterologists, which is laborious and time-consuming. The development of computational methods that can assist automated diagnosis of angiodysplasia is highly desirable. In this paper, we present a new approach, ADNet, for angiodysplasia segmentation using convolutional neural networks (CNNs). Compared with previous learning strategies, ADNet gains accuracy from attentionguided and domain-adversarial training via a multibranch CNN architecture. Specifically, the core branch is constructed for AD segmentation in a fully convolutional manner. Then we propose an attention module embedded in the attention branch to enhance network feature learning, which allows ADNet to focus on the most informative and AD relevant regions while processing. Furthermore, an adaptation branch is built to learn domain-invariant features by adversarial training, aiming to improve the performance when datasets are expanded while preventing the degradation induced by the variations in WCE image acquisition. ADNet is evaluated using two WCE datasets with angiodysplasia and the results show the accuracy gains we obtain, where the state-of-the-art segmentation performance on the public dataset of GIANA'17 is achieved. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key R&D program of China[2019YFB1312400]
|
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000771405404057
|
EI入藏号 | 20220911737350
|
EI主题词 | Convolution
; Endoscopy
; Image enhancement
; Learning systems
; Medical imaging
|
EI分类号 | Biomedical Engineering:461.1
; Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Imaging Techniques:746
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9562100 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257573 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.The Chinese University of Hong Kong 2.Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Xiao Jia,Xiaochun Mai,Xiaohan Xing,et al. Multibranch Learning for Angiodysplasia Segmentation with Attention-Guided Networks and Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:12373-12379.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论