中文版 | English
题名

Multibranch Learning for Angiodysplasia Segmentation with Attention-Guided Networks and Domain Adaptation

作者
通讯作者Xiaochun Mai
DOI
发表日期
2021
会议名称
IEEE International Conference on Robotics and Automation
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
12373-12379
会议日期
2021.5.31-2021.6.4
会议地点
Xi'an, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
As a common cause of anemia and gastrointestinal bleeding, angiodysplasia (AD) diagnosis in wireless capsule endoscopy (WCE) images is important in clinical. Current manual review requires undivided concentration of the gastroenterologists, which is laborious and time-consuming. The development of computational methods that can assist automated diagnosis of angiodysplasia is highly desirable. In this paper, we present a new approach, ADNet, for angiodysplasia segmentation using convolutional neural networks (CNNs). Compared with previous learning strategies, ADNet gains accuracy from attentionguided and domain-adversarial training via a multibranch CNN architecture. Specifically, the core branch is constructed for AD segmentation in a fully convolutional manner. Then we propose an attention module embedded in the attention branch to enhance network feature learning, which allows ADNet to focus on the most informative and AD relevant regions while processing. Furthermore, an adaptation branch is built to learn domain-invariant features by adversarial training, aiming to improve the performance when datasets are expanded while preventing the degradation induced by the variations in WCE image acquisition. ADNet is evaluated using two WCE datasets with angiodysplasia and the results show the accuracy gains we obtain, where the state-of-the-art segmentation performance on the public dataset of GIANA'17 is achieved.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000771405404057
EI入藏号
20220911737350
EI主题词
Convolution ; Endoscopy ; Image enhancement ; Learning systems ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Imaging Techniques:746
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9562100
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257573
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Xiao Jia,Xiaochun Mai,Xiaohan Xing,et al. Multibranch Learning for Angiodysplasia Segmentation with Attention-Guided Networks and Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:12373-12379.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao Jia]的文章
[Xiaochun Mai]的文章
[Xiaohan Xing]的文章
百度学术
百度学术中相似的文章
[Xiao Jia]的文章
[Xiaochun Mai]的文章
[Xiaohan Xing]的文章
必应学术
必应学术中相似的文章
[Xiao Jia]的文章
[Xiaochun Mai]的文章
[Xiaohan Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。