题名 | Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model |
作者 | |
通讯作者 | Max Q.-H. Meng |
共同第一作者 | Zhaoting Li; Jiankun Wang |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Robotics and Automation
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-9078-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 7386-7392
|
会议日期 | 2021.5.31-2021.6.4
|
会议地点 | Xi'an, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Robot path planning is difficult to solve due to the contradiction between the optimality of results and the complexity of algorithms, even in 2D environments. To find an optimal path, the algorithm needs to search all the state space, which costs many computation resources. To address this issue, we present a novel recurrent generative model (RGM), which generates efficient heuristic to reduce the search efforts of path planning algorithms. This RGM model adopts the framework of general generative adversarial networks (GAN), which consists of a novel generator that can generate heuristic by refining the outputs recurrently and two discriminators that check the connectivity and safety properties of heuristic. We test the proposed RGM module in various 2D environments to demonstrate its effectiveness and efficiency. The results show that, compared with a model without recurrence, the RGM successfully generates appropriate heuristic in both seen and new unseen maps with higher accuracy, demonstrating the good generalization ability of the RGM model. We also compare the rapidly-exploring random tree star (RRT*) with generated heuristic and the conventional RRT* in four different maps, showing that the generated heuristic can guide the algorithm to efficiently find both initial and optimal solutions in a faster and more efficient way. |
关键词 | |
学校署名 | 第一
; 共同第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Key Laboratory of Robotics Perception and Intelligence[ZDSYS20200810171800001]
; Hong Kong RGC GRF[14200618]
|
WOS研究方向 | Automation & Control Systems
; Robotics
|
WOS类目 | Automation & Control Systems
; Robotics
|
WOS记录号 | WOS:000771405401014
|
EI入藏号 | 20220911737815
|
EI主题词 | Computational Complexity
; Heuristic Algorithms
; Motion Planning
; Optimization
; Robot Programming
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Computer Programming:723.1
; Artificial Intelligence:723.4
; Robotics:731.5
; Optimization Techniques:921.5
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561472 |
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257576 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.Southern University of Science and Technology 2.The Chinese University of Hong Kong, Hong Kong 3.Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhaoting Li,Jiankun Wang,Max Q.-H. Meng. Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:7386-7392.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论