中文版 | English
题名

Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model

作者
通讯作者Max Q.-H. Meng
共同第一作者Zhaoting Li; Jiankun Wang
DOI
发表日期
2021
会议名称
IEEE International Conference on Robotics and Automation
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-9078-5
会议录名称
卷号
2021-May
页码
7386-7392
会议日期
2021.5.31-2021.6.4
会议地点
Xi'an, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Robot path planning is difficult to solve due to the contradiction between the optimality of results and the complexity of algorithms, even in 2D environments. To find an optimal path, the algorithm needs to search all the state space, which costs many computation resources. To address this issue, we present a novel recurrent generative model (RGM), which generates efficient heuristic to reduce the search efforts of path planning algorithms. This RGM model adopts the framework of general generative adversarial networks (GAN), which consists of a novel generator that can generate heuristic by refining the outputs recurrently and two discriminators that check the connectivity and safety properties of heuristic. We test the proposed RGM module in various 2D environments to demonstrate its effectiveness and efficiency. The results show that, compared with a model without recurrence, the RGM successfully generates appropriate heuristic in both seen and new unseen maps with higher accuracy, demonstrating the good generalization ability of the RGM model. We also compare the rapidly-exploring random tree star (RRT*) with generated heuristic and the conventional RRT* in four different maps, showing that the generated heuristic can guide the algorithm to efficiently find both initial and optimal solutions in a faster and more efficient way.

关键词
学校署名
第一 ; 共同第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Key Laboratory of Robotics Perception and Intelligence[ZDSYS20200810171800001] ; Hong Kong RGC GRF[14200618]
WOS研究方向
Automation & Control Systems ; Robotics
WOS类目
Automation & Control Systems ; Robotics
WOS记录号
WOS:000771405401014
EI入藏号
20220911737815
EI主题词
Computational Complexity ; Heuristic Algorithms ; Motion Planning ; Optimization ; Robot Programming
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Robotics:731.5 ; Optimization Techniques:921.5
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561472
出版状态
正式出版
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257576
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology
2.The Chinese University of Hong Kong, Hong Kong
3.Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhaoting Li,Jiankun Wang,Max Q.-H. Meng. Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:7386-7392.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhaoting Li]的文章
[Jiankun Wang]的文章
[Max Q.-H. Meng]的文章
百度学术
百度学术中相似的文章
[Zhaoting Li]的文章
[Jiankun Wang]的文章
[Max Q.-H. Meng]的文章
必应学术
必应学术中相似的文章
[Zhaoting Li]的文章
[Jiankun Wang]的文章
[Max Q.-H. Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。