题名 | DepthTrack: Unveiling the Power of RGBD Tracking |
作者 | |
DOI | https://openaccess.thecvf.com/content/ICCV2021/papers/Yan_DepthTrack_Unveiling_the_Power_of_RGBD_Tracking_ICCV_2021_paper.pdf |
发表日期 | 2021
|
会议名称 | ICCV
|
ISSN | 1550-5499
|
ISBN | 978-1-6654-2813-2
|
会议录名称 | |
页码 | 10705-10713
|
会议日期 | 2021
|
会议地点 | Virtual-only Conference
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | RGBD (RGB plus depth) object tracking is gaining momentum as RGBD sensors have become popular in many application fields such as robotics. However, the best RGBD trackers are extensions of the state-of-the-art deep RGB trackers. They are trained with RGB data and the depth channel is used as a sidekick for subtleties such as occlusion detection. This can be explained by the fact that there are no sufficiently large RGBD datasets to 1) train "deep depth trackers" and to 2) challenge RGB trackers with sequences for which the depth cue is essential. This work introduces a new RGBD tracking dataset - DepthTrack - that has twice as many sequences (200) and scene types (40) than in the largest existing dataset, and three times more objects (90). In addition, the average length of the sequences (1473), the number of deformable objects (16) and the number of annotated tracking attributes (15) have been increased. Furthermore, by running the SotA RGB and RGBD trackers on DepthTrack, we propose a new RGBD tracking baseline, namely DeT, which reveals that deep RGBD tracking indeed benefits from genuine training data. The code and dataset is available at https://github.com/xiaozai/DeT. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000798743200069
|
EI入藏号 | 20221511951435
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9710832 |
引用统计 |
被引频次[WOS]:27
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257588 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Tampere University 2.Southern University of Science and Technology 3.University of Birmingham |
推荐引用方式 GB/T 7714 |
Song Yan,Jinyu Yang,Jani Käpylä,et al. DepthTrack: Unveiling the Power of RGBD Tracking[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:10705-10713.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Yan_DepthTrack_Unvei(8859KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论