中文版 | English
题名

DepthTrack: Unveiling the Power of RGBD Tracking

作者
DOIhttps://openaccess.thecvf.com/content/ICCV2021/papers/Yan_DepthTrack_Unveiling_the_Power_of_RGBD_Tracking_ICCV_2021_paper.pdf
发表日期
2021
会议名称
ICCV
ISSN
1550-5499
ISBN
978-1-6654-2813-2
会议录名称
页码
10705-10713
会议日期
2021
会议地点
Virtual-only Conference
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
RGBD (RGB plus depth) object tracking is gaining momentum as RGBD sensors have become popular in many application fields such as robotics. However, the best RGBD trackers are extensions of the state-of-the-art deep RGB trackers. They are trained with RGB data and the depth channel is used as a sidekick for subtleties such as occlusion detection. This can be explained by the fact that there are no sufficiently large RGBD datasets to 1) train "deep depth trackers" and to 2) challenge RGB trackers with sequences for which the depth cue is essential. This work introduces a new RGBD tracking dataset - DepthTrack - that has twice as many sequences (200) and scene types (40) than in the largest existing dataset, and three times more objects (90). In addition, the average length of the sequences (1473), the number of deformable objects (16) and the number of annotated tracking attributes (15) have been increased. Furthermore, by running the SotA RGB and RGBD trackers on DepthTrack, we propose a new RGBD tracking baseline, namely DeT, which reveals that deep RGBD tracking indeed benefits from genuine training data. The code and dataset is available at https://github.com/xiaozai/DeT.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000798743200069
EI入藏号
20221511951435
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9710832
引用统计
被引频次[WOS]:27
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257588
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Tampere University
2.Southern University of Science and Technology
3.University of Birmingham
推荐引用方式
GB/T 7714
Song Yan,Jinyu Yang,Jani Käpylä,et al. DepthTrack: Unveiling the Power of RGBD Tracking[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:10705-10713.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yan_DepthTrack_Unvei(8859KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song Yan]的文章
[Jinyu Yang]的文章
[Jani Käpylä]的文章
百度学术
百度学术中相似的文章
[Song Yan]的文章
[Jinyu Yang]的文章
[Jani Käpylä]的文章
必应学术
必应学术中相似的文章
[Song Yan]的文章
[Jinyu Yang]的文章
[Jani Käpylä]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。