题名 | 新型水溶性有机空穴传输材料的分子设计及其在钙钛矿太阳能电池中的应用 |
姓名 | |
姓名拼音 | LIU Peiying
|
学号 | 11930268
|
学位类型 | 硕士
|
学位专业 | 085601 材料工程
|
学科门类/专业学位类别 | 0856 材料与化工
|
导师 | |
导师单位 | 前沿与交叉科学研究院
|
论文答辩日期 | 2021-11-08
|
论文提交日期 | 2021-12-10
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 当今世界,传统能源的逐渐耗尽要求人类大力开发可再生能源,而太阳能就是一种清洁能源,可以通过各种太阳能电池转化为电能。能够有效利用太阳能的钙钛矿太阳能电池,其能量转化效率在十多年里从3.9%增长到了25.5%,获得了广泛关注。当前的钙钛矿太阳能电池中,反式结构电池的效率不如正式结构电池,一个很重要的原因是其可选择的高效空穴传输材料非常有限。针对这种情况,我们设计并合成了两种新型共轭聚电解质材料,聚(联二噻吩-对(丙基磺酸钾)氧基苯)和聚(联二噻吩-对(丙基磺酸铷)氧基苯)(简记为DTB(K)和DTB(Rb)),分别使用它们作为空穴传输材料和掺杂材料对反式结构钙钛矿太阳能电池进行了优化。 相对于常用的空穴传输材料PEDOT:PSS,DTB(K)、DTB(Rb)两种材料的能级和钙钛矿材料的能级更加匹配,对空穴的提取能力更强,制成的电池迟滞小,且DTB(K)、DTB(Rb)中的功能基团可以钝化钙钛矿层下表面的缺陷,因此制成的电池效率更高、稳定性更好。使用DTB(K)、DTB(Rb)制备电池的最高效率分别为18.09%和19.26%,远高于PEDOT:PSS的15.58%。 将DTB(Rb)作为掺杂剂加入钙钛矿层中,可以有效降低钙钛矿层内部的缺陷态密度。电池的能量转化效率可以达到21.51%,高于未掺杂标准器件的20.09%。DTB(Rb)的加入改变了钙钛矿层的能级,更有利于电子、空穴的均衡提取。同时也抑制了缺陷诱导的非辐射复合,提高了载流子在钙钛矿层内的传输效率,从而提升了电池的长期工作稳定性。 |
其他摘要 | Nowadays, the gradual depletion of traditional energy resources requires the development of renewable energy resources. Solar energy is a clean energy which can be converted to electrical energy by various solar cells. Particularly, perovskite solar cells have attracted the extensive attention in recent years due to their rapid improvement of power conversion efficiency from 3.9% to 25.5%. For current perovskite solar cells, the efficiency of inverted devices is lower than that of regular ones, and one important reason of this is the limited selection of efficient hole-transporting materials. In view of this situation, two new conjugated polyelectrolyte hole-transporting materials poly(potassium 3,3'-((2-([2,2'-bithiophen]-5-yl)-1,4-phenylene)bis(oxy))bis(propane-1-sulfonate)) and poly(rubidium 3,3'-((2-([2,2'-bithiophen]-5-yl)-1,4-phenylene)bis(oxy))bis(propane-1-sulfonate)) (noted as DTB(K) and DTB(Rb)) are designed and synthesized. They serve as hole-transporting materials or dopants of perovskite respectively to optimize inverted perovskite solar cells. Compared with the conventional hole-transporting material PEDOT:PSS, the energy levels of the DTB(K) and DTB(Rb) match better with the perovskite absorber. Therefore, the photogenerated holes can be efficiently collected at the interface, yielding a smaller hysteresis. The functional groups in DTB(K) and DTB(Rb) can passivate defects on the underlying surface of the perovskite layer, resulting in a higher efficiency and better stability. Using DTB(K) and DTB(Rb) as the hole-transporting layer, the efficiencies of the cells can be 18.09% and 19.26%, respectively, which are much higher than 15.58% of PEDOT:PSS based device. When DTB(Rb) is doped into the perovskite precursor as a passivation material, the defect density in the perovskite layer can be effectively reduced. The power conversion efficiency of the champion device can reach 21.51%, which is much higher than the efficiency (20.09%) of the control device without doping. In addition, the incorporation of DTB(Rb) can change the energy levels of the perovskite layer, make it more conducive to the equilibrium extraction of electrons and holes, and inhibit defect-induced non-radiative recombination, which improves the transportation efficiency of charges carriers in the perovskite layer and enhances the long-term operation stability of the device. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2019
|
学位授予年份 | 2021
|
参考文献列表 | [1] Jackson P, Hariskos D, Lotter E, et al. New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells Beyond 20%[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 894-897. [2] Parida B, Iniyan S, Goic R. A Review of Solar Photovoltaic Technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636. [3] Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [4] Kim H-S, Lee C-R, Im J-H, et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2(1): 591. [5] Lee M M, Teuscher J, Miyasaka T, et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012, 338(6107): 643. [6] Abrusci A, Stranks S D, Docampo P, et al. High-Performance Perovskite-Polymer Hybrid Solar Cells Via Electronic Coupling with Fullerene Monolayers[J]. Nano Letters, 2013, 13(7): 3124-3128. [7] Burschka J, Pellet N, Moon S-J, et al. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells[J]. Nature, 2013, 499(7458): 316-319. [8] Liu M, Johnston M B, Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature, 2013, 501(7467): 395-398. [9] National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-effici-ency.html. [10] De Wolf S, Holovsky J, Moon S-J, et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. [11] Stranks S D, Eperon G E, Grancini G, et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013, 342(6156): 341. [12] Wehrenfennig C, Eperon G E, Johnston M B, et al. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589. [13] Chapin D M, Fuller C S, Pearson G L. A New Silicon P‐N Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics, 1954, 25(5): 676-677. [14] Yamaguchi M, Nishimura K-I, Sasaki T, et al. Novel Materials for High-Efficiency III-V Multi-Junction Solar Cells[J]. Solar Energy, 2008, 82(2): 173-180. [15] Green M A, Ho-Baillie A, Snaith H J. The Emergence of Perovskite Solar Cells[J]. Nature Photonics, 2014, 8(7): 506-514. [16] Nelson J. The Physics of Solar Cells [M]. Published by Imperial College Press and Distributed by World Scientific Publishing Co, 2003, 52-71. [17] Chen B, Rudd P N, Yang S, et al. Imperfections and Their Passivation in Halide Perovskite Solar Cells[J]. Chemical Society Reviews, 2019, 48(14): 3842-3867. [18] Tvingstedt K, Malinkiewicz O, Baumann A, et al. Radiative Efficiency of Lead Iodide Based Perovskite Solar Cells[J]. Scientific Reports, 2014, 4(1): 6071. [19] Tress W, Marinova N, Inganas O, et al. Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: The Role of Radiative and Non-Radiative Recombination[J]. Advanced Energy Materials, 2014, 5(3): 1-6. [20] Tress W, Yavari M, Domanski K, et al. Interpretation and Evolution of Open-Circuit Voltage, Recombination, Ideality Factor and Subgap Defect States During Reversible Light-Soaking and Irreversible Degradation of Perovskite Solar Cells[J]. Energy & Environmental Science, 2018, 11(1): 151-165. [21] Zheng D, Peng R, Wang G, et al. Simultaneous Bottom-up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells Using Nonconjugated Small-Molecule Electrolytes[J]. Advanced Materials, 2019, 31(40): 1903239. [22] Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Reducing Surface Recombination by a Poly(4-Vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency[J]. ACS Omega, 2018, 3(5): 5038-5043. [23] Hu C, Bai Y, Xiao S, et al. Tuning the A-Site Cation Composition of Fa Perovskites for Efficient and Stable Nio-Based P-I-N Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2017, 5(41): 21858-21865. [24] Hui W, Yang Y, Xu Q, et al. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(4): 1906374. [25] Jung M, Ji S-G, Kim G, et al. Perovskite Precursor Solution Chemistry: From Fundamentals to Photovoltaic Applications[J]. Chemical Society Reviews, 2019, 48(7): 2011-2038. [26] Im J-H, Lee C-R, Lee J-W, et al. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell[J]. Nanoscale, 2011, 3(10): 4088-4093. [27] Green M A, Dunlop E D, Levi D H, et al. Solar Cell Efficiency Tables (Version 54)[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(7): 565-575. [28] Burschka J, Pellet N, Moon S J, et al. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells[J]. Nature, 2013, 499(7458): 316-319. [29] Im J-H, Jang I-H, Pellet N, et al. Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells[J]. Nature Nanotechnology, 2014, 9(11): 927-932. [30] Jeon N J, Noh J H, Kim Y C, et al. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells[J]. Nature Materials, 2014, 13(9): 897-903. [31] Ahn N, Son D-Y, Jang I-H, et al. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated Via Lewis Base Adduct of Lead(II) Iodide[J]. Journal of the American Chemical Society, 2015, 137(27): 8696-8699. [32] Agiorgousis M L, Sun Y Y, Zeng H, et al. Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3PbI3 [J]. J Am Chem Soc, 2014, 136(41): 14570-14575. [33] Walsh A, Scanlon D O, Chen S, et al. Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites[J]. Angewandte Chemie International Edition, 2015, 54(6): 1791-1794. [34] Steirer K X, Schulz P, Teeter G, et al. Defect Tolerance in Methylammonium Lead Triiodide Perovskite[J]. ACS Energy Letters, 2016, 1(2): 360-366. [35] Yin W-J, Shi T, Yan Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber[J]. Applied Physics Letters, 2014, 104(6): 063903. [36] Kim J, Lee S-H, Lee J H, et al. The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1312-1317. [37] Ball J M, Petrozza A. Defects in Perovskite-Halides and Their Effects in Solar Cells[J]. Nature Energy, 2016, 1(11): 16149. [38] Stranks S D. Nonradiative Losses in Metal Halide Perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525. [39] Pazos-Outón L M, Xiao T P, Yablonovitch E. Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1703-1711. [40] Tress W, Marinova N, Inganäs O, et al. Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: The Role of Radiative and Non-Radiative Recombination[J]. Advanced Energy Materials, 2015, 5(3): 1400812. [41] Shao Y, Xiao Z, Bi C, et al. Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells[J]. Nature Communications, 2014, 5(1): 5784. [42] Abate A, Saliba M, Hollman D J, et al. Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells[J]. Nano Letters, 2014, 14(6): 3247-3254. [43] Ran C, Xu J, Gao W, et al. Defects in Metal Triiodide Perovskite Materials Towards High-Performance Solar Cells: Origin, Impact, Characterization, and Engineering[J]. Chemical Society Reviews, 2018, 47(12): 4581-4610. [44] Domanski K, Correa-Baena J-P, Mine N, et al. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells[J]. ACS Nano, 2016, 10(6): 6306-6314. [45] Li Z, Xiao C, Yang Y, et al. Extrinsic Ion Migration in Perovskite Solar Cells[J]. Energy & Environmental Science, 2017, 10(5): 1234-1242. [46] Long R, Liu J, Prezhdo O V. Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation[J]. Journal of the American Chemical Society, 2016, 138(11): 3884-3890. [47] Sadoughi G, Starr D E, Handick E, et al. Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13440-13444. [48] Zhang W, Pathak S, Sakai N, et al. Enhanced Optoelectronic Quality of Perovskite Thin Films with Hypophosphorous Acid for Planar Heterojunction Solar Cells[J]. Nature Communications, 2015, 6(1): 10030. [49] Chen B, Yang M, Priya S, et al. Origin of J-V Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917. [50] Yuan Y, Huang J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293. [51] Bischak C G, Hetherington C L, Wu H, et al. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites[J]. Nano Letters, 2017, 17(2): 1028-1033. [52] Slotcavage D J, Karunadasa H I, Mcgehee M D. Light-Induced Phase Segregation in Halide-Perovskite Absorbers[J]. ACS Energy Letters, 2016, 1(6): 1199-1205. [53] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation[J]. Nature, 2018, 555(7697): 497-501. [54] Carrillo J, Guerrero A, Rahimnejad S, et al. Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells[J]. Advanced Energy Materials, 2016, 6(9): 1502246. [55] Hermes I M, Hou Y, Bergmann V W, et al. The Interplay of Contact Layers: How the Electron Transport Layer Influences Interfacial Recombination and Hole Extraction in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2018, 9(21): 6249-6256. [56] Kim S, Bae S, Lee S-W, et al. Relationship between Ion Migration and Interfacial Degradation of CH3NH3PbI3 Perovskite Solar Cells under Thermal Conditions[J]. Scientific Reports, 2017, 7(1): 1200. [57] Wu S, Chen R, Zhang S, et al. A Chemically Inert Bismuth Interlayer Enhances Long-Term Stability of Inverted Perovskite Solar Cells[J]. Nature Communications, 2019, 10(1): 1161. [58] Lin Y, Chen B, Zhao F, et al. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells[J]. Advanced Materials, 2017, 29(26): 1700607. [59] Noel N K, Abate A, Stranks S D, et al. Enhanced Photoluminescence and Solar Cell Performance Via Lewis Base Passivation of Organic-Inorganic Lead Halide Perovskites[J]. ACS Nano, 2014, 8(10): 9815-9821. [60] Wen T Y, Yang S, Liu P F, et al. Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics[J]. Advanced Energy Materials, 2018, 8(13): 1703143. [61] Zeng Q, Zhang X, Feng X, et al. Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V[J]. Advanced Materials, 2018, 30(9): 1705393. [62] Wang F, Geng W, Zhou Y, et al. Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells[J]. Advanced Materials, 2016, 28(45): 9986-9992. [63] Zuo L, Guo H, Dequilettes D W, et al. Polymer-Modified Halide Perovskite Films for Efficient and Stable Planar Heterojunction Solar Cells[J]. Science Advances, 2017, 3(8): e1700106. [64] Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions[J]. ACS Energy Letters, 2017, 2(5): 1214-1222. [65] Son D-Y, Kim S-G, Seo J-Y, et al. Universal Approach toward Hysteresis-Free Perovskite Solar Cell Via Defect Engineering[J]. Journal of the American Chemical Society, 2018, 140(4): 1358-1364. [66] Zhao P, Yin W, Kim M, et al. Improved Carriers Injection Capacity in Perovskite Solar Cells by Introducing A-Site Interstitial Defects[J]. Journal of Materials Chemistry A, 2017, 5(17): 7905-7911. [67] Abdi-Jalebi M, Pazoki M, Philippe B, et al. Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations[J]. ACS Nano, 2018, 12(7): 7301-7311. [68] Zhang M, Yun J S, Ma Q, et al. High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching[J]. ACS Energy Letters, 2017, 2(2): 438-444. [69] Jokar E, Chien C-H, Fathi A, et al. Slow Surface Passivation and Crystal Relaxation with Additives to Improve Device Performance and Durability for Tin-Based Perovskite Solar Cells[J]. Energy & Environmental Science, 2018, 11(9): 2353-2362. [70] Lee D S, Yun J S, Kim J, et al. Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells[J]. ACS Energy Letters, 2018, 3(3): 647-654. [71] Grancini G, Roldán-Carmona C, Zimmermann I, et al. One-Year Stable Perovskite Solar Cells by 2d/3d Interface Engineering[J]. Nature Communications, 2017, 8(1): 15684. [72] Lin Y, Bai Y, Fang Y, et al. Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2d/3d Stacking Structures[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 654-658. [73] Li Q, Zhao Y, Fu R, et al. Efficient Perovskite Solar Cells Fabricated through CsCl-Enhanced PbI2 Precursor Via Sequential Deposition[J]. Adv Mater, 2018, e1803095. [74] Chen B, Yu Z, Liu K, et al. Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%[J]. Joule, 2019, 3(1): 177-190. [75] Li X, Chen C-C, Cai M, et al. Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with -COOH Functional Group[J]. Advanced Energy Materials, 2018, 8(20): 1800715. [76] Chen Q, Zhou H, Song T-B, et al. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells[J]. Nano Letters, 2014, 14(7): 4158-4163. [77] Kim J, Yun J S, Cho Y, et al. Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells[J]. ACS Energy Letters, 2017, 2(9): 1978-1984. [78] Choi H, Mai C-K, Kim H-B, et al. Conjugated Polyelectrolyte Hole Transport Layer for Inverted-Type Perovskite Solar Cells[J]. Nature Communications, 2015, 6(1): 7348. [79] Yan K, Long M, Zhang T, et al. Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering Behind Device Processing for High Efficiency[J]. Journal of the American Chemical Society, 2015, 137(13): 4460-4468. [80] Jo J W, Seo M-S, Park M, et al. Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material[J]. Advanced Functional Materials, 2016, 26(25): 4464-4471. [81] Liu Y, Renna L A, Page Z A, et al. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions[J]. Advanced Energy Materials, 2016, 6(20): 1600664. [82] Xue Q, Chen G, Liu M, et al. Improving Film Formation and Photovoltage of Highly Efficient Inverted-Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers[J]. Advanced Energy Materials, 2016, 6(5): 1502021. [83] Li X, Liu X, Wang X, et al. Polyelectrolyte Based Hole-Transporting Materials for High Performance Solution Processed Planar Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2015, 3(29): 15024-15029. [84] Zhang L, Zhou X, Zhong X, et al. Hole-Transporting Layer Based on a Conjugated Polyelectrolyte with Organic Cations Enables Efficient Inverted Perovskite Solar Cells[J]. Nano Energy, 2019, 57: 248-255. [85] Zhang L, Liu C, Zhang J, et al. Intensive Exposure of Functional Rings of a Polymeric Hole-Transporting Material Enables Efficient Perovskite Solar Cells[J]. Advanced Materials, 2018, 30(39): 1804028. [86] Bu T, Li J, Zheng F, et al. Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module[J]. Nature Communications, 2018, 9(1): 4609. [87] Chen W, Zhou Y, Chen G, et al. Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872. [88] Min H, Kim M, Lee S-U, et al. Efficient, Stable Solar Cells by Using Inherent Bandgap of Α-Phase Formamidinium Lead Iodide[J]. Science, 2019, 366(6466): 749. [89] Zhang L, Zhou X, Xie J, et al. Conjugated Polyelectrolyte with Potassium Cations Enables Inverted Perovskite Solar Cells with an Efficiency over 20%[J]. Journal of Materials Chemistry A, 2020, 8(17): 8238-8243. [90] Wang C, Hu J, Li C, et al. Spiro-Linked Molecular Hole-Transport Materials for Highly Efficient Inverted Perovskite Solar Cells[J]. Solar RRL, 2020, 4(3): 1900389. [91] Zhang L, Zhou X, Xie J, et al. Learning from Hole-Transporting Polymers in Regular Perovskite Solar Cells to Construct Efficient Conjugated Polyelectrolytes for Inverted Devices[J]. Chemical Engineering Journal, 2021, 420(1): 129735. [92] Liu Z, Chen Q, Lee J-W, et al. Rationally Induced Interfacial Dipole in Planar Heterojunction Perovskite Solar Cells for Reduced J-V Hysteresis[J]. Advanced Energy Materials, 2018, 8(23): 1800568. [93] Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics[J]. Chemical Reviews, 2019, 119(5): 3418-3451. [94] Garai R, Gupta R K, Tanwar A S, et al. Conjugated Polyelectrolyte-Passivated Stable Perovskite Solar Cells for Efficiency Beyond 20%[J]. Chemistry of Materials, 2021, 33(14): 5709-5717.
|
所在学位评定分委会 | 材料科学与工程系
|
国内图书分类号 | TM914.4
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257621 |
专题 | 工学院_材料科学与工程系 |
推荐引用方式 GB/T 7714 |
刘培颍. 新型水溶性有机空穴传输材料的分子设计及其在钙钛矿太阳能电池中的应用[D]. 深圳. 南方科技大学,2021.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11930268-刘培颍-材料科学与工程(4555KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[刘培颍]的文章 |
百度学术 |
百度学术中相似的文章 |
[刘培颍]的文章 |
必应学术 |
必应学术中相似的文章 |
[刘培颍]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论