[1]徐丰羽, 郭义全, 周映江, et al. 软体机器人的驱动器及制作方法研究综述 [J]. 南京邮电大学学报, 2018, 04: 69-80.
[2]孙沂琳, 张秋菊, 陈宵燕. 软体驱动器研究综述 [J]. 机械设计, 2019, 02: 5-18.
[3]Chen S, Cao Y, Sarparast M, et al. Soft Crawling Robots: Design, Actuation, and Locomotion [J]. Advanced Materials Technologies, 2020, 5(2): 1900837.
[4]吴枫, 韩亚丽, 李沈炎, et al. 柔性仿生驱动器研究综述 [J]. 现代制造工程, 2020, 07: 146-156.
[5]Morin F J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature [J]. Physical Review Letters, 1959, 3(1): 34-36.
[6]Becker M F, Buckman A B, Walser R M, et al. Femtosecond Laser Excitation of the Semiconductor-Metal Phase Transition in VO2 [J]. Applied Physics Letters, 1994, 65(12): 1507-1509.
[7]Li M, Magdassi S, Gao Y, et al. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows [J]. Small, 2017, 13(36): 1701147.
[8]钟莉. 二氧化钒纳米材料的水热合成, 物相演化和相变性能 [D]; 中国科学技术大学, 2017.
[9]Cao J, Ertekin E, Srinivasan V, et al. Strain Engineering and One-Dimensional Organization of Metal-Insulator Domains in Single-Crystal Vanadium Dioxide Beams [J]. Nature Nanotechnology, 2009, 4(11): 732-737.
[10]Guo H, Chen K, Oh Y, et al. Mechanics and Dynamics of the Strain-Induced M1-M2 Structural Phase Transition in Individual VO2 Nanowires [J]. Nano Letters, 2011, 11(8): 3207-3213.
[11]孔凤玉. 钒氧化物的可控制备及其物性研究 [D]. 中国科学院研究生院, 2012.
[12]Cavalleri A, Tóth C, Siders C W, et al. Femtosecond Structural Dynamics in VO2 During an Ultrafast Solid-Solid Phase Transition [J]. Physical Review Letters, 2001, 87(23): 237401.
[13]Yao T, Zhang X D, Sun Z H, et al. Understanding the Nature of the Kinetic Process in a VO2 Metal-Insulator Transition [J]. Physical Review Letters, 2010, 105(22): 226405
[14]Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or Mott-Hubbard? A View from Band Theory [J]. Physical Review Letters, 1994, 72(21): 3389-3392.
[15]Kim H T, Lee Y W, Kim B J, et al. Monoclinic and Correlated Metal Phase in VO2 as Evidence of the Mott Transition: Coherent Phonon Analysis [J]. Physical Review Letters, 2006, 97(26): 266401
[16]Zhu Z Y, Schwingenschlogl U. Comprehensive Picture of VO2 from Band Theory [J]. Physical Review B, 2012, 86(7): 075149
[17]Goodenough J B, Hong H Y. Structures and a Two-Band Model for the System V1− xCrxO2 [J]. Physical Review B, 1973, 8(4): 1323.
[18]Lysenko S, Vikhnin V, Fernandez F, et al. Photoinduced Insulator-to-Metal Phase Transition in VO2 Crystalline Films and Model of Dielectric Susceptibility [J]. Physical Review B, 2007, 75(7): 075109
[19]Yang Z, Ko C Y, Ramanathan S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions [J]. Annual Review of Materials Research, 2011, 41: 337-367.
[20]Zhang J S, Jin H B, Chen Z, et al. Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale [J]. Chemistry of Materials, 2015, 27(21): 7419-7424.
[21]Yin D H, Xu N K, Zhang J Y, et al. High Quality Vanadium Dioxide Films Prepared by an Inorganic Sol-Gel Method [J]. Materials Research Bulletin, 1996, 31(3): 335-340.
[22]Manning T D, Parkin I P, Pemble M E, et al. Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide [J]. Chemistry of Materials, 2004, 16(4): 744-749.
[23]Lee S, Hippalgaonkar K, Yang F, et al. Anomalously Low Electronic Thermal Conductivity in Metallic Vanadium Dioxide [J]. Science, 2017, 355(6323): 371-374.
[24]Yoon H, Choi M, Lim T W, et al. Reversible Phase Modulation and Hydrogen Storage in Multivalent VO2 Epitaxial Thin Films [J]. Nature Materials, 2016, 15(10): 1113-1119.
[25]Simo A, Mwakikunga B, Sone B T, et al. VO2 Nanostructures Based Chemiresistors for Low Power Energy Consumption Hydrogen Sensing [J]. International Journal of Hydrogen Energy, 2014, 39(15): 8147-8157.
[26]Shukla N, Thathachary A V, Agrawal A, et al. A Steep-Slope Transistor Based on Abrupt Electronic Phase Transition [J]. Nature Communications, 2015, 6(1): 1-6.
[27]Fan L, Chen Y, Liu Q, et al. Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film [J]. ACS Applied Materials, 2016, 8(48): 32971-32977.
[28]Wu X, Wu Z, Ji C, et al. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping [J]. ACS Applied Materials, 2016, 8(18): 11842-11850.
[29]Lu J, Liu H, Deng S, et al. Highly Sensitive and Multispectral Responsive Phototransistor Using Tungsten-Doped VO2 Nanowires [J]. Nanoscale, 2014, 6(13): 7619-7627.
[30]Warwick M E A, Binions R. Advances in Thermochromic Vanadium Dioxide Films [J]. Journal of Materials Chemistry A, 2014, 2(10): 3275-3292.
[31]Shi R, Shen N, Wang J W, et al. Recent Advances in Fabrication Strategies, Phase Transition Modulation, and Advanced Applications of Vanadium Dioxide [J]. Applied Physics Reviews, 2019, 6(1): 011312
[32]Barnes J R, Stephenson R J, Welland M E, et al. Photothermal Spectroscopy with Femtojoule Sensitivity Using a Micromechanical Device [J]. Nature, 1994, 372(6501): 79-81.
[33]Lemieux M C, Mcconney M E, Lin Y H, et al. Polymeric Nanolayers as Actuators for Ultrasensitive Thermal Bimorphs [J]. Nano Letters, 2006, 6(4): 730-734.
[34]Rua A, Fernandez F E, Sepulveda N. Bending in VO2-Coated Microcantilevers Suitable for Thermally Activated Actuators [J]. Journal of Applied Physics, 2010, 107(7): 074506
[35]Cao J B, Fan W, Zhou Q, et al. Colossal Thermal-Mechanical Actuation via Phase Transition in Single-Crystal VO2 Microcantilevers [J]. Journal of Applied Physics, 2010, 108(8): 083538
[36]Wang K, Cheng C, Cardona E, et al. Performance Limits of Microactuation with Vanadium Dioxide as a Solid Engine [J]. ACS Nano, 2013, 7(3): 2266-2272.
[37]Liu K, Cheng C, Cheng Z T, et al. Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs [J]. Nano Letters, 2012, 12(12): 6302-6308.
[38]Wang T, Torres D, Fernandez F E, et al. Maximizing the Performance of Photothermal Actuators by Combining Smart Materials with Supplementary Advantages [J]. Science Advances, 2017, 3(4): e1602697
[39]Wang T Y, Torres D, Fernandez F E, et al. Increasing Efficiency, Speed, and Responsivity of Vanadium Dioxide Based Photothermally Driven Actuators Using Single-Wall Carbon Nanotube Thin-Films [J]. ACS Nano, 2015, 9(4): 4371-4378.
[40]Ma H, Zhang X P, Cui R X, et al. Photo-Driven Nanoactuators Based on Carbon Nanocoils and Vanadium Dioxide Bimorphs [J]. Nanoscale, 2018, 10(23): 11158-11164.
[41]Lee S, Cheng C, Guo H, et al. Axially Engineered Metal-Insulator Phase Transition by Graded Doping VO2 Nanowires [J]. Journal of the American Chemical Society, 2013, 135(12): 4850-4855.
[42]Dong K, Choe H S, Wang X, et al. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition [J]. Small, 2018, 14(14): 1703621.
[43]Wang X, Dong K C, Choe H S, et al. Multifunctional Microelectro-Opto-Mechanical Platform Based on Phase-Transition Materials [J]. Nano Letters, 2018, 18(3): 1637-1643.
[44]Sohn J I, Joo H J, Porter A E, et al. Direct Observation of the Structural Component of the Metal-Insulator Phase Transition and Growth Habits of Epitaxially Grown VO2 Nanowires [J]. Nano Letters, 2007, 7(6): 1570-1574.
[45]Wang Y P, Sun X, Chen Z Z, et al. Defect-Engineered Epitaxial VO2±δ in Strain Engineering of Heterogeneous Soft Crystals [J]. Science Advances, 2018, 4(5): eaar3679.
[46]Cheng C, Guo H, Amini A, et al. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires [J]. Scientific Reports, 2014, 4(1): 1-5
[47]Mutilin S V, Prinz V Y, Seleznev V A, et al. Growth of Ordered Arrays of Vertical Free-Standing VO2 Nanowires on Nanoimprinted Si [J]. Applied Physics Letters, 2018, 113(4): 043101
[48]Long Y Z, Yu M, Sun B, et al. Recent Advances in Large-Scale Assembly of Semiconducting Inorganic Nanowires and Nanofibers for Electronics, Sensors and Photovoltaics [J]. Chemical Society Reviews, 2012, 41(12): 4560-4580.
[49]Xie B H, Fu W B, Fei G T, et al. Preparation and Enhanced Infrared Response Properties of Ordered W-Doped VO2 Nanowire Array [J]. Applied Surface Science, 2018, 436: 1061-1066.
[50]Liu K, Lee S, Yang S, et al. Recent Progresses on Physics and Applications of Vanadium Dioxide [J]. Materials Today, 2018, 21(8): 875-896.
[51]Ma H, Hou J, Wang X, et al. Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs [J]. Nano Letters, 2017, 17(1): 421-428.
[52]Shen N, Chen S, Wang W J, et al. Joule Heating Driven Infrared Switching in Flexible VO2 Nanoparticle Films with Reduced Energy Consumption for Smart Windows [J]. Journal of Materials Chemistry A, 2019, 7(9): 4516-4524.
[53]Sharma Y, Balachandran J, Sohn C, et al. Nanoscale Control of Oxygen Defects and Metal-Insulator Transition in Epitaxial Vanadium Dioxides [J]. ACS Nano, 2018, 12(7): 7159-7166.
[54]Sharma Y, Holt M V, Laanait N, et al. Competing Phases in Epitaxial Vanadium Dioxide at Nanoscale [J]. APL Materials, 2019, 7(8): 081127
[55]Zhang H T, Zhang L, Mukherjee D, et al. Wafer-Scale Growth of VO2 Thin Films Using a Combinatorial Approach [J]. Nature Communications, 2015, 6(1): 1-8
[56]Ji H, Wei J, Natelson D. Modulation of the Electrical Properties of VO2 Nanobeams Using an Ionic Liquid as a Gating Medium [J]. Nano Letters, 2012, 12(6): 2988-2992.
[57]Liu K, Fu D Y, Cao J B, et al. Dense Electron System from Gate-Controlled Surface Metal-Insulator Transition [J]. Nano Letters, 2012, 12(12): 6272-6277.
[58]Shi R, Cai X B, Wang W J, et al. Single-Crystalline Vanadium Dioxide Actuators [J]. Advanced Functional Materials, 2019, 29(20): 1900527
[59]Cheng C, Fu D Y, Liu K, et al. Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal-Insulator Transition in VO2 [J]. Advanced Optical Materials, 2015, 3(3): 336-341.
[60]Wang J W, Shi R, Wang W J, et al. Directly Probing Light Absorption Enhancement of Single Hierarchical Structures with Engineered Surface Roughness [J]. Scientific Reports, 2018, 8(1): 1-7
[61]Shi R, Wang J W, Cai X B, et al. Axial Modulation of Metal-Insulator Phase Transition of VO2 Nanowires by Graded Doping Engineering for Optically Readable Thermometers [J]. Journal of Physical Chemistry C, 2017, 121(44): 24877-24885.
[62]Wang J W, Zhang Z W, Shi R, et al. Impact of Nanoscale Roughness on Heat Transport across the Solid-Solid Interface [J]. Advanced Materials Interfaces, 2020, 7(4): 1901582
[63]Chen P, Shi R, Shen N, et al. Multistimuli-Responsive Insect-Scale Soft Robotics Based on Anisotropic Super-Aligned VO2 Nanowire/Carbon Nanotube Bimorph Actuators [J]. Advanced Intelligent Systems, 2020, 2(8): 2000051.
[64]Gao Y F, Cao C X, Dai L, et al. Phase and Shape Controlled VO2 Nanostructures by Antimony Doping [J]. Energy & Environmental Science, 2012, 5(9): 8708-8715.
[65]Cheng C, Liu K, Xiang B, et al. Ultra-Long, Free-Standing, Single-Crystalline Vanadium Dioxide Micro/Nanowires Grown by Simple Thermal Evaporation [J]. Applied Physics Letters, 2012, 100(10):103111
[66]Wei B Q, Vajtai R, Jung Y, et al. Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition [J]. Chemistry of Materials, 2003, 15(8): 1598-1606.
[67]Shi W S, Peng H Y, Zheng Y F, et al. Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires [J]. Advanced Materials, 2000, 12(18): 1343-1345.
[68]Cheng C, Lei M, Feng L, et al. High-Quality ZnO Nanowire Arrays Directly Fabricated from Photoresists [J]. ACS Nano, 2009, 3(1): 53-58.
[69]Wu C Z, Feng F, Feng J, et al. Hydrogen-Incorporation Stabilization of Metallic VO2(R) Phase to Room Temperature, Displaying Promising Low-Temperature Thermoelectric Effect [J]. Journal of the American Chemical Society, 2011, 133(35): 13798-13801.
[70]Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic Multilayer Films of VO2 and TiO2 with Enhanced Transmittance [J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687.
[71]Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic VO2-Based Multilayer Films with Enhanced Luminous Transmittance and Solar Modulation [J]. Physica Status Solidi (A)-Applications and Materials Science, 2009, 206(9): 2155-2160.
[72]Lai W E, Shi R, Yuan H, et Al. Fully Optically Tunable and Flexible Composite Films for Enhanced Terahertz Control and Multifunctional Terahertz Devices [J]. ACS Applied Electronic Materials, 2021, 3(7): 3044-3051.
[73]Wu Y C, Yim J K, Liang J M, et al. Insect-Scale Fast Moving and Ultrarobust Soft Robot [J]. Science Robotics, 2019, 4(32): eaax1594.
[74]Hu B S, Wang L W, Zhao Y Z, et al. A Miniature Wall Climbing Robot with Biomechanical Suction Cups [J]. Industrial Robots, 2009, 36(6): 551-561.
[75]Jafferis N T, Helbling E F, Karpelson M, et al. Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle [J]. Nature, 2019, 570(7762): 491-495.
[76]Wang C W, Wang Y B, Yao Y G, et al. A Solution-Processed High-Temperature, Flexible, Thin-Film Actuator [J]. Advanced Materials, 2016, 28(39): 8618-8624.
[77]Hu Y, Liu J Q, Chang L F, et al. Electrically and Sunlight-Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite [J]. Advanced Functional Materials, 2017, 27(44): 1704388
[78]Chen L Z, Weng M C, Zhou Z W, et al. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application [J]. ACS Nano, 2015, 9(12): 12189-12196.
[79]Hu W Q, Lum G Z, Mastrangeli M, et al. Small-Scale Soft-Bodied Robot with Multimodal Locomotion [J]. Nature, 2018, 554(7690): 81-85.
[80]Weng M C, Zhou P D, Chen L Z, et al. Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencil-on-Paper Method [J]. Advanced Functional Materials, 2016, 26(40): 7244-7253.
[81]Shin B, Ha J, Lee M, et al. Hygrobot: A Self-Locomotive Ratcheted Actuator Powered by Environmental Humidity [J]. Science Robotics, 2018, 3(14): eaar2629.
[82]Goodenough J B. 2 Components of Crystallographic Transition in VO2 [J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500.
[83]Liu K, Cheng C, Suh J, et al. Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition [J]. Advanced Materials, 2014, 26(11): 1746-1750.
[84]Manca N, Pellegrino L, Kanki T, et al. Selective High-Frequency Mechanical Actuation Driven by the VO2 Electronic Instability [J]. Advanced Materials, 2017, 29(35): 1701618
[85]Shi H Y, Hu B, Yu X C, et al. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J]. Advanced Functional Materials, 2010, 20(6): 958-964.
[86]Li C Y, Chou T W. Axial and Radial Thermal Expansions of Single-Walled Carbon Nanotubes [J]. Physical Review B, 2005, 71(23): 235414
[87]Hu Y, Wu G, Lan T, et al. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators [J]. Advanced Materials, 2015, 27(47): 7867-7873.
[88]Tian Z, Xu B R, Hsu B, et al. Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures [J]. Nano Letters, 2018, 18(5): 3017-3023.
[89]Gu G, Schmid M, Chiu P W, et al. V2O5 Nanofibre Sheet Actuators [J]. Nature Materials, 2003, 2(5): 316-319.
[90]Acerce M, Akdoğan E K, Chhowalla M J N. Metallic Molybdenum Disulfide Nanosheet-Based Electrochemical Actuators [J]. Nature, 2017, 549(7672): 370-373.
[91]Kwan K, Li S, Hau N, et al. Light-Stimulated Actuators Based on Nickel Hydroxide-Oxyhydroxide [J]. Science Robotics, 2018, 3(18): eaat4051.
[92]Xiao P, Yi N, Zhang T, et al. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials [J]. Advanced Science, 2016, 3(6): 1500438.
[93]Lu C, Yang Y, Wang J, et al. High-Performance Graphdiyne-Based Electrochemical Actuators [J]. Nature Communications, 2018, 9(1): 1-11.
[94]Li J, Zhang R, Mou L, et al. Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots [J]. Advanced Functional Materials, 2019, 29(27): 1808995.
[95]Ji M, Jiang N, Chang J, et al. Near-Infrared Light-Driven, Highly Efficient Bilayer Actuators Based on Polydopamine-Modified Reduced Graphene Oxide [J]. Advanced Functional Materials, 2014, 24(34): 5412-5419.
修改评论