中文版 | English
题名

二氧化钒基驱动器的制备与优化

姓名
姓名拼音
KONG Dejun
学号
11930613
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
专业型
导师
程春
导师单位
材料科学与工程系
外机构导师
陈根余
外机构导师单位
深圳市大族激光科技股份有限公司
论文答辩日期
2021-11-08
论文提交日期
2021-12-10
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

软体机器人是一类具有结构柔顺度高、环境适应性好、功能类型多样等特点的新型机器人,在康复、探测和救援等领域都具有广阔的应用前景。其中,驱动器作为软体机器人的核心执行部件,决定其性能与工作模式。高性能柔性驱动器的研究已经成为软体机器人领域的重点方向。

二氧化钒(VO2)由于其近室温金属绝缘体相变特性,成为制备高性能驱动器的理想智能材料。然而,目前报道的VO2基驱动器局限于亚毫米量级,无法满足宏观软体机器人的应用需求。基于这一问题,本论文开展基于二氧化钒纳米线阵列(VO2 nanowire array, VO2 NA)驱动器的研究,主要工作简述如下。

我们开发了一种竖直VO2 NA的水热制备策略,利用三氧化二锑(Sb2O3)提升成核位点,在石英衬底上低温制备了晶圆尺寸且竖直取向的VO2 NA。本工作有效地调控了阵列密度以及纳米线长度,并阐释了VO2 NA的生长机制。同时, VO2 NA与衬底之间较弱的相互作用,使得VO2 NA的转移更加容易,为实现NA薄膜的宏观器件应用奠定了基础。

我们还开发了一种水热结合退火工艺的策略,制造出水平超顺排VO2 NA薄膜/碳纳米管(Carbon nanotube, CNT)双晶片薄膜驱动器,实现了软体机器人的基本功能。VO2 NA/CNT驱动器展现了与传统VO2微驱动器相似的驱动性能:对多种刺激响应,高的响应频率和长的使用寿命。此外,该驱动器还具有优异的各向异性与可加工性,通过激光切割实现了多种仿生机器人的制造,如仿生尺蠖、飞行翼、扭转机器人等。这一工作实现了将VO2优异的驱动性能应用在宏观器件上的基本目标,也为开发高性能软体机器人提供了新的思路。

其他摘要

The soft robot is a new kind of robot with high structural flexibility, good environmental adaptability, and diverse functions. It has a broad application prospect in the fields of rehabilitation, detection, and rescue. Actuator as the core executive component of soft robot, directly determines its performance and working mode. Therefore, high-performance flexible actuators have become the focus of research.

Vanadium dioxide (VO2) is an ideal smart material for the preparation of high-performance actuators because of its metal-insulator phase transition near room temperature. However, the currently reported VO2-based actuators are still limited to the sub-millimeter scale and cannot meet the application requirements of macroscopic soft robots. Based on this issue, this thesis focuses on the preparation and optimization of vanadium dioxide nanowire array (VO2 NA) based actuators. The main work is briefly described as follows.

We develop a preparation strategy for growing vertical VO2 NA by hydrothermal method by effectively enhancing the nucleation sites of VO2 crystals. VO2 NA can be prepared at low temperature with adjustable wafer size and vertical alignment. This work effectively controls the array density and nanowire length and explains the growth mechanism of VO2 NA. Besides, the weaker interaction between the prepared VO2 NA and substrate makes the transfer of NA film easier, laying a foundation for its application in macroscopic devices.

We also develop a preparation strategy combing hydrothermal method with annealing process to prepare horizontal super-aligned VO2 NA films, which is further laminated with carbon nanotube (CNT) films to form centimeter-sized bimorph actuators, which realizes the basic functions of soft robots. The VO2 NA/CNT actuator prepared in this work shows similar actuation performance to the traditional VO2 micro actuator, such as high amplitude, high output work density and working modes in response to a variety of stimuli as well as fast response frequency and long working life. In addition, this work also shows the excellent anisotropy and machinability of actuators. The effective modulation of device shape and working mode of actuators can be realized by laser cutting. A variety of bionic applications are demonstrated, such as bionic inchworm, flying wing, torsion robot and so on. This work not only realizes the basic goal of applying the excellent actuation performance of VO2 to macro actuators, but also provides a new idea for the development of high-performance soft robots.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2021
参考文献列表

[1]徐丰羽, 郭义全, 周映江, et al. 软体机器人的驱动器及制作方法研究综述 [J]. 南京邮电大学学报, 2018, 04: 69-80.
[2]孙沂琳, 张秋菊, 陈宵燕. 软体驱动器研究综述 [J]. 机械设计, 2019, 02: 5-18.
[3]Chen S, Cao Y, Sarparast M, et al. Soft Crawling Robots: Design, Actuation, and Locomotion [J]. Advanced Materials Technologies, 2020, 5(2): 1900837.
[4]吴枫, 韩亚丽, 李沈炎, et al. 柔性仿生驱动器研究综述 [J]. 现代制造工程, 2020, 07: 146-156.
[5]Morin F J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature [J]. Physical Review Letters, 1959, 3(1): 34-36.
[6]Becker M F, Buckman A B, Walser R M, et al. Femtosecond Laser Excitation of the Semiconductor-Metal Phase Transition in VO2 [J]. Applied Physics Letters, 1994, 65(12): 1507-1509.
[7]Li M, Magdassi S, Gao Y, et al. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows [J]. Small, 2017, 13(36): 1701147.
[8]钟莉. 二氧化钒纳米材料的水热合成, 物相演化和相变性能 [D]; 中国科学技术大学, 2017.
[9]Cao J, Ertekin E, Srinivasan V, et al. Strain Engineering and One-Dimensional Organization of Metal-Insulator Domains in Single-Crystal Vanadium Dioxide Beams [J]. Nature Nanotechnology, 2009, 4(11): 732-737.
[10]Guo H, Chen K, Oh Y, et al. Mechanics and Dynamics of the Strain-Induced M1-M2 Structural Phase Transition in Individual VO2 Nanowires [J]. Nano Letters, 2011, 11(8): 3207-3213.
[11]孔凤玉. 钒氧化物的可控制备及其物性研究 [D]. 中国科学院研究生院, 2012.
[12]Cavalleri A, Tóth C, Siders C W, et al. Femtosecond Structural Dynamics in VO2 During an Ultrafast Solid-Solid Phase Transition [J]. Physical Review Letters, 2001, 87(23): 237401.
[13]Yao T, Zhang X D, Sun Z H, et al. Understanding the Nature of the Kinetic Process in a VO2 Metal-Insulator Transition [J]. Physical Review Letters, 2010, 105(22): 226405
[14]Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or Mott-Hubbard? A View from Band Theory [J]. Physical Review Letters, 1994, 72(21): 3389-3392.
[15]Kim H T, Lee Y W, Kim B J, et al. Monoclinic and Correlated Metal Phase in VO2 as Evidence of the Mott Transition: Coherent Phonon Analysis [J]. Physical Review Letters, 2006, 97(26): 266401
[16]Zhu Z Y, Schwingenschlogl U. Comprehensive Picture of VO2 from Band Theory [J]. Physical Review B, 2012, 86(7): 075149
[17]Goodenough J B, Hong H Y. Structures and a Two-Band Model for the System V1− xCrxO2 [J]. Physical Review B, 1973, 8(4): 1323.
[18]Lysenko S, Vikhnin V, Fernandez F, et al. Photoinduced Insulator-to-Metal Phase Transition in VO2 Crystalline Films and Model of Dielectric Susceptibility [J]. Physical Review B, 2007, 75(7): 075109
[19]Yang Z, Ko C Y, Ramanathan S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions [J]. Annual Review of Materials Research, 2011, 41: 337-367.
[20]Zhang J S, Jin H B, Chen Z, et al. Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale [J]. Chemistry of Materials, 2015, 27(21): 7419-7424.
[21]Yin D H, Xu N K, Zhang J Y, et al. High Quality Vanadium Dioxide Films Prepared by an Inorganic Sol-Gel Method [J]. Materials Research Bulletin, 1996, 31(3): 335-340.
[22]Manning T D, Parkin I P, Pemble M E, et al. Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide [J]. Chemistry of Materials, 2004, 16(4): 744-749.
[23]Lee S, Hippalgaonkar K, Yang F, et al. Anomalously Low Electronic Thermal Conductivity in Metallic Vanadium Dioxide [J]. Science, 2017, 355(6323): 371-374.
[24]Yoon H, Choi M, Lim T W, et al. Reversible Phase Modulation and Hydrogen Storage in Multivalent VO2 Epitaxial Thin Films [J]. Nature Materials, 2016, 15(10): 1113-1119.
[25]Simo A, Mwakikunga B, Sone B T, et al. VO2 Nanostructures Based Chemiresistors for Low Power Energy Consumption Hydrogen Sensing [J]. International Journal of Hydrogen Energy, 2014, 39(15): 8147-8157.
[26]Shukla N, Thathachary A V, Agrawal A, et al. A Steep-Slope Transistor Based on Abrupt Electronic Phase Transition [J]. Nature Communications, 2015, 6(1): 1-6.
[27]Fan L, Chen Y, Liu Q, et al. Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film [J]. ACS Applied Materials, 2016, 8(48): 32971-32977.
[28]Wu X, Wu Z, Ji C, et al. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping [J]. ACS Applied Materials, 2016, 8(18): 11842-11850.
[29]Lu J, Liu H, Deng S, et al. Highly Sensitive and Multispectral Responsive Phototransistor Using Tungsten-Doped VO2 Nanowires [J]. Nanoscale, 2014, 6(13): 7619-7627.
[30]Warwick M E A, Binions R. Advances in Thermochromic Vanadium Dioxide Films [J]. Journal of Materials Chemistry A, 2014, 2(10): 3275-3292.
[31]Shi R, Shen N, Wang J W, et al. Recent Advances in Fabrication Strategies, Phase Transition Modulation, and Advanced Applications of Vanadium Dioxide [J]. Applied Physics Reviews, 2019, 6(1): 011312
[32]Barnes J R, Stephenson R J, Welland M E, et al. Photothermal Spectroscopy with Femtojoule Sensitivity Using a Micromechanical Device [J]. Nature, 1994, 372(6501): 79-81.
[33]Lemieux M C, Mcconney M E, Lin Y H, et al. Polymeric Nanolayers as Actuators for Ultrasensitive Thermal Bimorphs [J]. Nano Letters, 2006, 6(4): 730-734.
[34]Rua A, Fernandez F E, Sepulveda N. Bending in VO2-Coated Microcantilevers Suitable for Thermally Activated Actuators [J]. Journal of Applied Physics, 2010, 107(7): 074506
[35]Cao J B, Fan W, Zhou Q, et al. Colossal Thermal-Mechanical Actuation via Phase Transition in Single-Crystal VO2 Microcantilevers [J]. Journal of Applied Physics, 2010, 108(8): 083538
[36]Wang K, Cheng C, Cardona E, et al. Performance Limits of Microactuation with Vanadium Dioxide as a Solid Engine [J]. ACS Nano, 2013, 7(3): 2266-2272.
[37]Liu K, Cheng C, Cheng Z T, et al. Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs [J]. Nano Letters, 2012, 12(12): 6302-6308.
[38]Wang T, Torres D, Fernandez F E, et al. Maximizing the Performance of Photothermal Actuators by Combining Smart Materials with Supplementary Advantages [J]. Science Advances, 2017, 3(4): e1602697
[39]Wang T Y, Torres D, Fernandez F E, et al. Increasing Efficiency, Speed, and Responsivity of Vanadium Dioxide Based Photothermally Driven Actuators Using Single-Wall Carbon Nanotube Thin-Films [J]. ACS Nano, 2015, 9(4): 4371-4378.
[40]Ma H, Zhang X P, Cui R X, et al. Photo-Driven Nanoactuators Based on Carbon Nanocoils and Vanadium Dioxide Bimorphs [J]. Nanoscale, 2018, 10(23): 11158-11164.
[41]Lee S, Cheng C, Guo H, et al. Axially Engineered Metal-Insulator Phase Transition by Graded Doping VO2 Nanowires [J]. Journal of the American Chemical Society, 2013, 135(12): 4850-4855.
[42]Dong K, Choe H S, Wang X, et al. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition [J]. Small, 2018, 14(14): 1703621.
[43]Wang X, Dong K C, Choe H S, et al. Multifunctional Microelectro-Opto-Mechanical Platform Based on Phase-Transition Materials [J]. Nano Letters, 2018, 18(3): 1637-1643.
[44]Sohn J I, Joo H J, Porter A E, et al. Direct Observation of the Structural Component of the Metal-Insulator Phase Transition and Growth Habits of Epitaxially Grown VO2 Nanowires [J]. Nano Letters, 2007, 7(6): 1570-1574.
[45]Wang Y P, Sun X, Chen Z Z, et al. Defect-Engineered Epitaxial VO2±δ in Strain Engineering of Heterogeneous Soft Crystals [J]. Science Advances, 2018, 4(5): eaar3679.
[46]Cheng C, Guo H, Amini A, et al. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires [J]. Scientific Reports, 2014, 4(1): 1-5
[47]Mutilin S V, Prinz V Y, Seleznev V A, et al. Growth of Ordered Arrays of Vertical Free-Standing VO2 Nanowires on Nanoimprinted Si [J]. Applied Physics Letters, 2018, 113(4): 043101
[48]Long Y Z, Yu M, Sun B, et al. Recent Advances in Large-Scale Assembly of Semiconducting Inorganic Nanowires and Nanofibers for Electronics, Sensors and Photovoltaics [J]. Chemical Society Reviews, 2012, 41(12): 4560-4580.
[49]Xie B H, Fu W B, Fei G T, et al. Preparation and Enhanced Infrared Response Properties of Ordered W-Doped VO2 Nanowire Array [J]. Applied Surface Science, 2018, 436: 1061-1066.
[50]Liu K, Lee S, Yang S, et al. Recent Progresses on Physics and Applications of Vanadium Dioxide [J]. Materials Today, 2018, 21(8): 875-896.
[51]Ma H, Hou J, Wang X, et al. Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs [J]. Nano Letters, 2017, 17(1): 421-428.
[52]Shen N, Chen S, Wang W J, et al. Joule Heating Driven Infrared Switching in Flexible VO2 Nanoparticle Films with Reduced Energy Consumption for Smart Windows [J]. Journal of Materials Chemistry A, 2019, 7(9): 4516-4524.
[53]Sharma Y, Balachandran J, Sohn C, et al. Nanoscale Control of Oxygen Defects and Metal-Insulator Transition in Epitaxial Vanadium Dioxides [J]. ACS Nano, 2018, 12(7): 7159-7166.
[54]Sharma Y, Holt M V, Laanait N, et al. Competing Phases in Epitaxial Vanadium Dioxide at Nanoscale [J]. APL Materials, 2019, 7(8): 081127
[55]Zhang H T, Zhang L, Mukherjee D, et al. Wafer-Scale Growth of VO2 Thin Films Using a Combinatorial Approach [J]. Nature Communications, 2015, 6(1): 1-8
[56]Ji H, Wei J, Natelson D. Modulation of the Electrical Properties of VO2 Nanobeams Using an Ionic Liquid as a Gating Medium [J]. Nano Letters, 2012, 12(6): 2988-2992.
[57]Liu K, Fu D Y, Cao J B, et al. Dense Electron System from Gate-Controlled Surface Metal-Insulator Transition [J]. Nano Letters, 2012, 12(12): 6272-6277.
[58]Shi R, Cai X B, Wang W J, et al. Single-Crystalline Vanadium Dioxide Actuators [J]. Advanced Functional Materials, 2019, 29(20): 1900527
[59]Cheng C, Fu D Y, Liu K, et al. Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal-Insulator Transition in VO2 [J]. Advanced Optical Materials, 2015, 3(3): 336-341.
[60]Wang J W, Shi R, Wang W J, et al. Directly Probing Light Absorption Enhancement of Single Hierarchical Structures with Engineered Surface Roughness [J]. Scientific Reports, 2018, 8(1): 1-7
[61]Shi R, Wang J W, Cai X B, et al. Axial Modulation of Metal-Insulator Phase Transition of VO2 Nanowires by Graded Doping Engineering for Optically Readable Thermometers [J]. Journal of Physical Chemistry C, 2017, 121(44): 24877-24885.
[62]Wang J W, Zhang Z W, Shi R, et al. Impact of Nanoscale Roughness on Heat Transport across the Solid-Solid Interface [J]. Advanced Materials Interfaces, 2020, 7(4): 1901582
[63]Chen P, Shi R, Shen N, et al. Multistimuli-Responsive Insect-Scale Soft Robotics Based on Anisotropic Super-Aligned VO2 Nanowire/Carbon Nanotube Bimorph Actuators [J]. Advanced Intelligent Systems, 2020, 2(8): 2000051.
[64]Gao Y F, Cao C X, Dai L, et al. Phase and Shape Controlled VO2 Nanostructures by Antimony Doping [J]. Energy & Environmental Science, 2012, 5(9): 8708-8715.
[65]Cheng C, Liu K, Xiang B, et al. Ultra-Long, Free-Standing, Single-Crystalline Vanadium Dioxide Micro/Nanowires Grown by Simple Thermal Evaporation [J]. Applied Physics Letters, 2012, 100(10):103111
[66]Wei B Q, Vajtai R, Jung Y, et al. Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition [J]. Chemistry of Materials, 2003, 15(8): 1598-1606.
[67]Shi W S, Peng H Y, Zheng Y F, et al. Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires [J]. Advanced Materials, 2000, 12(18): 1343-1345.
[68]Cheng C, Lei M, Feng L, et al. High-Quality ZnO Nanowire Arrays Directly Fabricated from Photoresists [J]. ACS Nano, 2009, 3(1): 53-58.
[69]Wu C Z, Feng F, Feng J, et al. Hydrogen-Incorporation Stabilization of Metallic VO2(R) Phase to Room Temperature, Displaying Promising Low-Temperature Thermoelectric Effect [J]. Journal of the American Chemical Society, 2011, 133(35): 13798-13801.
[70]Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic Multilayer Films of VO2 and TiO2 with Enhanced Transmittance [J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687.
[71]Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic VO2-Based Multilayer Films with Enhanced Luminous Transmittance and Solar Modulation [J]. Physica Status Solidi (A)-Applications and Materials Science, 2009, 206(9): 2155-2160.
[72]Lai W E, Shi R, Yuan H, et Al. Fully Optically Tunable and Flexible Composite Films for Enhanced Terahertz Control and Multifunctional Terahertz Devices [J]. ACS Applied Electronic Materials, 2021, 3(7): 3044-3051.
[73]Wu Y C, Yim J K, Liang J M, et al. Insect-Scale Fast Moving and Ultrarobust Soft Robot [J]. Science Robotics, 2019, 4(32): eaax1594.
[74]Hu B S, Wang L W, Zhao Y Z, et al. A Miniature Wall Climbing Robot with Biomechanical Suction Cups [J]. Industrial Robots, 2009, 36(6): 551-561.
[75]Jafferis N T, Helbling E F, Karpelson M, et al. Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle [J]. Nature, 2019, 570(7762): 491-495.
[76]Wang C W, Wang Y B, Yao Y G, et al. A Solution-Processed High-Temperature, Flexible, Thin-Film Actuator [J]. Advanced Materials, 2016, 28(39): 8618-8624.
[77]Hu Y, Liu J Q, Chang L F, et al. Electrically and Sunlight-Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite [J]. Advanced Functional Materials, 2017, 27(44): 1704388
[78]Chen L Z, Weng M C, Zhou Z W, et al. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application [J]. ACS Nano, 2015, 9(12): 12189-12196.
[79]Hu W Q, Lum G Z, Mastrangeli M, et al. Small-Scale Soft-Bodied Robot with Multimodal Locomotion [J]. Nature, 2018, 554(7690): 81-85.
[80]Weng M C, Zhou P D, Chen L Z, et al. Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencil-on-Paper Method [J]. Advanced Functional Materials, 2016, 26(40): 7244-7253.
[81]Shin B, Ha J, Lee M, et al. Hygrobot: A Self-Locomotive Ratcheted Actuator Powered by Environmental Humidity [J]. Science Robotics, 2018, 3(14): eaar2629.
[82]Goodenough J B. 2 Components of Crystallographic Transition in VO2 [J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500.
[83]Liu K, Cheng C, Suh J, et al. Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition [J]. Advanced Materials, 2014, 26(11): 1746-1750.
[84]Manca N, Pellegrino L, Kanki T, et al. Selective High-Frequency Mechanical Actuation Driven by the VO2 Electronic Instability [J]. Advanced Materials, 2017, 29(35): 1701618
[85]Shi H Y, Hu B, Yu X C, et al. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J]. Advanced Functional Materials, 2010, 20(6): 958-964.
[86]Li C Y, Chou T W. Axial and Radial Thermal Expansions of Single-Walled Carbon Nanotubes [J]. Physical Review B, 2005, 71(23): 235414
[87]Hu Y, Wu G, Lan T, et al. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators [J]. Advanced Materials, 2015, 27(47): 7867-7873.
[88]Tian Z, Xu B R, Hsu B, et al. Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures [J]. Nano Letters, 2018, 18(5): 3017-3023.
[89]Gu G, Schmid M, Chiu P W, et al. V2O5 Nanofibre Sheet Actuators [J]. Nature Materials, 2003, 2(5): 316-319.
[90]Acerce M, Akdoğan E K, Chhowalla M J N. Metallic Molybdenum Disulfide Nanosheet-Based Electrochemical Actuators [J]. Nature, 2017, 549(7672): 370-373.
[91]Kwan K, Li S, Hau N, et al. Light-Stimulated Actuators Based on Nickel Hydroxide-Oxyhydroxide [J]. Science Robotics, 2018, 3(18): eaat4051.
[92]Xiao P, Yi N, Zhang T, et al. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials [J]. Advanced Science, 2016, 3(6): 1500438.
[93]Lu C, Yang Y, Wang J, et al. High-Performance Graphdiyne-Based Electrochemical Actuators [J]. Nature Communications, 2018, 9(1): 1-11.
[94]Li J, Zhang R, Mou L, et al. Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots [J]. Advanced Functional Materials, 2019, 29(27): 1808995.
[95]Ji M, Jiang N, Chang J, et al. Near-Infrared Light-Driven, Highly Efficient Bilayer Actuators Based on Polydopamine-Modified Reduced Graphene Oxide [J]. Advanced Functional Materials, 2014, 24(34): 5412-5419.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB381
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257622
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
孔德俊. 二氧化钒基驱动器的制备与优化[D]. 深圳. 南方科技大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930613-孔德俊-材料科学与工程(5999KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孔德俊]的文章
百度学术
百度学术中相似的文章
[孔德俊]的文章
必应学术
必应学术中相似的文章
[孔德俊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。