[1] Johansson R S, Flanagan J R. Coding and Use of Tactile Signals from the Fingertips in Object Manipulation Tasks[J]. Nature Reviews Neuroscience, 2009, 10(5): 345-359.
[2] Ma Z, Li S, Wang H, et al. Advanced Electronic Skin Devices for Healthcare Applications[J]. Journal of Materials Chemistry B, 2019, 7(2): 173-197.
[3] 美国 《科学》杂志评出2000年十大科学成就[J],中国科技产业 2001(01): 57.
[4] Yang J C, Mun J, Kwon S Y, et al. Electronic Skin: Recent Progress and Future Prospects for Skin-attachable Devices for Health Monitoring, Robotics, and Prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765. [5] Kim D-H, Lu N, Ma R, et al. Epidermal Electronics[J]. Science, 2011, 333(6044): 838-843.
[6] Velliste M, Perel S, Spalding M C, et al. Cortical Control of a Prosthetic Arm for Self-feeding[J]. Nature, 2008, 453(7198): 1098-1101.
[7] Shintaku H, Nakagawa T, Kitagawa D, et al. Development of Piezoelectric Acoustic Sensor with Frequency Selectivity for Artificial Cochlea[J]. Sensors and Actuators A: Physical, 2010, 158(2): 183-192.
[8] Yang J, Liu Q, Deng Z, et al. Ionic Liquid-activated Wearable Electronics[J]. Materials Today Physics, 2019, 8: 78-85.
[9] Dargaville T R, Farrugia B L, Broadbent J A, et al. Sensors and Imaging for Wound Healing: a Review[J]. Biosensors and Bioelectronics, 2013, 41: 30-42.
[10] Hernández-Santos C, Davizón Y A, Said A R, et al. Development of a Wearable Finger Exoskeleton for Rehabilitation[J]. Applied Sciences, 2021, 11(9): 4145.
[11] Wan Y, Wang Y, Guo C F. Recent Progresses on Flexible Tactile Sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[12] Ji B, Zhou Q, Lei M, et al. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range[J]. Small, 2021, 17(43): 2103312.
[13] An B W, Heo S, Ji S, et al. Transparent and Flexible Fingerprint Sensor Array with Multiplexed Detection of Tactile Pressure and Skin Temperature[J]. Nature Communications, 2018, 9(1): 1- 10.
[14] Yoo J Y, Seo M H, Lee J S, et al. Industrial Grade, Bending-insensitive, Transparent Nanoforce Touch Sensor via Enhanced Percolation Effect in a Hierarchical Nanocomposite Film[J]. Advanced Functional Materials, 2018, 28(42): 1804721.
[15] Lipomi D J, Vosgueritchian M, Tee B C, et al. Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788- 792.
[16] Ho D H, Sun Q, Kim S Y, et al. Stretchable and Multimodal All Graphene Electronic Skin[J]. Advanced Materials, 2016, 28(13): 2601-2608.
[17] Yang J C, Kim J-O, Oh J, et al. Microstructured Porous Pyramid-based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19472-19480.
[18] Hu W, Niu X, Zhao R, et al. Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane[J]. Applied Physics Letters, 2013, 102(8): 38.
[19] Choi J, Kwon D, Kim K, et al. Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler Toward High Performance Capacitive Pressure Sensors[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1698-1706.
[20] Lee J H, Heo J S, Kim Y J, et al. A Behavior-learned cross-reactive Sensor Matrix for Intelligent Skin Perception[J]. Advanced Materials, 2020, 32(22): 2000969.
[21] Zhong W, Liu C, Liu Q, et al. Ultrasensitive Wearable Pressure Sensors Assembled by Surfacepatterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42706-42714.
[22] Kim S, Amjadi M, Lee T-I, et al. Wearable, Ultrawide-range, and Bending-insensitive Pressure Sensor Based on Carbon Nanotube Network-coated Porous Elastomer Sponges for Human Interface and Healthcare Devices[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23639-23648. [23] Zhu B, Niu Z, Wang H, et al. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors[J]. Small, 2014, 10(18): 3625-3631. [24] Zhang Y-Z, El-Demellawi J K, Jiang Q, et al. MXene Hydrogels: Fundamentals and Applications[J]. Chemical Society Reviews, 2020, 49(20): 7229-7251.
25] Pyo S, Lee J-I, Kim M-O, et al. Development of a Flexible Three-axis Tactile Sensor Based on Screen-printed Carbon Nanotube-polymer Composite[J]. Journal of Micromechanics and Microengineering, 2014, 24(7): 075012.
[26] Han S, Liu C, Huang Z, et al. High-performance Pressure Sensors Based on 3D Microstructure Fabricated by a Facile Transfer Technology[J]. Advanced Materials Technologies, 2019, 4(5): 1800640.
[27] Pyo S, Lee J, Kim W, et al. Multi-layered, Hierarchical Fabric-based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range[J]. Advanced Functional Materials, 2019, 29(35): 1902484.
[28] Dai H, Thostenson E T. Large-area Carbon Nanotube-based Flexible Composites for Ultrawide Range Pressure Sensing and Spatial Pressure Mapping[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48370-48380.
[29] Gao Z Y, Zhou J, Gu Y D, et al. Effects of Piezoelectric Potential on the Transport Characteristics of Metal-ZnO Nanowire-metal Field Effect Transistor[J]. J Appl Phys, 2009, 105(11): 6.
[30] Yang T, Pan H, Tian G, et al. Hierarchically Structured PVDF/ZnO Core-shell Nanofibers for Self-powered Physiological Monitoring Electronics[J]. Nano Energy, 2020, 72: 104706.
[31] Xie M, Zhang Y, Kraśny M J, et al. Flexible and Active Self-powered Pressure, Shear Sensors Based on Freeze Casting Ceramic-polymer Composites[J]. Energy & Environmental Science,, 2018, 11(10): 2919-2927.
[32] Kim M-O, Pyo S, Oh Y, et al. Flexible and Multi-directional Piezoelectric Energy Harvester for Self-powered Human Motion Sensor[J]. Smart Materials and Structures, 2018, 27(3): 035001.
[33] Fan F-R, Tian Z-Q, Wang Z L. Flexible Triboelectric Generator[J]. Nano Energy, 2012, 1(2): 328-334.
[34] Park S, Kim H, Vosgueritchian M, et al. Stretchable Energy-harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes[J]. Advanced Materials, 2014, 26(43): 7324-7332.
[35] Zhou K, Zhao Y, Sun X, et al. Ultra-stretchable Triboelectric Nanogenerator as High-sensitive and Self-powered Electronic Skins for Energy Harvesting and Tactile Sensing[J]. Nano Energy, 2020, 70: 104546. [36] Zhu X X, Meng X S, Kuang S Y, et al. Triboelectrification-enabled Touch Sensing for Selfpowered Position Mapping and Dynamic Tracking by a Flexible and Area-scalable Sensor Array[J]. Nano Energy, 2017, 41: 387-393.
[37] Pu X, Liu M, Chen X, et al. Ultrastretchable, Transparent Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Tactile Sensing[J]. Science Advances, 2017, 3(5): e1700015.
[38] Huang J, Yang X, Yu J, et al. A Universal and Arbitrary Tactile Interactive System Based on Self-powered Optical Communication[J]. Nano Energy, 2020, 69: 104419.
[39] Pyo S, Kim M-O, Kwon D-S, et al. All-textile Wearable Triboelectric Nanogenerator Using Pile-embroidered Fibers for Enhancing Output Power[J]. Smart Materials and Structures, 2020, 29(5): 055026.
[40] Nie B, Xing S, Brandt J D, et al. Droplet-based Interfacial Capacitive Sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[41] Nie B, Li R, Brandt J D, et al. Iontronic Microdroplet Array for Flexible Ultrasensitive Tactile Sensing[J]. Lab on a Chip, 2014, 14(6): 1107-1116. [42] Nie B, Li R, Brandt J D, et al. Microfluidic Tactile Sensors for Three-dimensional Contact Force Measurements[J]. Lab on a Chip, 2014, 14(22): 4344-4353.
[43] Sun J Y, Keplinger C, Whitesides G M, et al. Ionic Skin[J]. Advanced Materials, 2014, 26(45): 7608-7614.
[44] Gouy M. Sur la Constitution de la Charge électrique à la Surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910, 9(1): 457-468.
[45] P De Rooij M. Electrochemical Methods: Fundamentals and Applications[J]. Anti-Corrosion Methods and Materials, 2003.
[46] Chortos A, Liu J, Bao Z. Pursuing Prosthetic Electronic Skin[J]. Nature Materials, 2016, 15(9): 937-950.
[47] Delmas P, Hao J, Rodat-Despoix L. Molecular Mechanisms of Mechanotransduction in Mammalian Sensory Neurons[J]. Nature Reviews Neuroscience, 2011, 12(3): 139-153.
[48] C. Craig J M K, James. Factors Affecting Tactile Spatial Acuity[J]. Somatosensory & Motor Research, 1998, 15(1): 29-45.
[49] Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers[J]. Nature Materials, 2010, 9(10): 859-864.
[50] Ha M, Lim S, Cho S, et al. Skin-inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-free, Ultrathin, and Highly Sensitive Triboelectric Sensors[J]. ACS Nano, 2018, 12(4): 3964-3974.
[51] Luo Y, Shao J, Chen S, et al. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17796-17803.
[52] Bai N, Wang L, Wang Q, et al. Graded Intrafillable Architecture-based Iontronic Pressure Sensor with Ultra-broad-range High Sensitivity[J]. Nature Communications, 2020, 11(1): 1-9.
[53] Wan Y, Qiu Z, Hong Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-aspect-ratio Microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[54] Choi Y W, Kang D, Pikhitsa P V, et al. Ultra-sensitive Pressure Sensor Based on Guided Straight Mechanical Cracks[J]. Scientific Reports, 2017, 7(1): 1-8.
[55] Lu P, Wang L, Zhu P, et al. Iontronic Pressure Sensor with High Sensitivity and Linear Response Over a Wide Pressure Range Based on Soft Micropillared Electrodes[J]. Science Bulletin, 2021, 66(11): 1091-1100. [56] Bae G Y, Pak S W, Kim D, et al. Linearly and Highly Pressure-sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array[J]. Advanced Materials, 2016, 28(26): 5300- 5306.
[57] Lee Y, Park J, Cho S, et al. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response Over Exceptionally Broad Pressure Range[J]. ACS Nano, 2018, 12(4): 4045-4054.
[58] Xu H, Gao L, Wang Y, et al. Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics[J]. Nano-micro Letters, 2020, 12(1): 1- 13.
[59] Guo Y, Zhong M, Fang Z, et al. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-range Human–machine Interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150.
[60] Wang K, Lou Z, Wang L, et al. Bioinspired Interlocked Structure-induced High Deformability for Two-dimensional Titanium Carbide (MXene)/Natural Microcapsule-based Flexible Pressure Sensors[J]. ACS nano, 2019, 13(8): 9139-9147.
[61] Cheng W, Yu L, Kong D, et al. Fast-response and Low-hysteresis Flexible Pressure Sensor Based on Silicon Nanowires[J]. IEEE Electron Device Letters, 2018, 39(7): 1069-1072.
[62] Kapoor S, Arora P, Kapoor V, et al. Haptics-Touchfeedback Technology Widening the Horizon of Medicine[J]. Journal of Clinical and Diagnostic Research: JCDR, 2014, 8(3): 294.
[63] Yu L, Parker S, Xuan H, et al. Flexible Multi-material Fibers for Distributed Pressure and Temperature Sensing[J]. Advanced Functional Materials, 2020, 30(9): 1908915.
[64] Feng Y, Liu H, Zhu W, et al. Muscle-Inspired MXene Conductive Hydrogels with Anisotropy and Low-temperature Tolerance for Wearable Flexible Sensors and Arrays[J]. Advanced Functional Materials, 2021: 2105264.
[65] Pyo S, Choi J, Kim J. Flexible, Transparent, Sensitive, and Crosstalk-free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric[J]. Advanced Electronic Materials, 2018, 4(1): 1700427.
[66] Zhu X X, Li Z B, Li X S, et al. Triboelectrification-enabled Thin-film Tactile Matrix for Selfpowered High-resolution Imaging[J]. Nano Energy, 2018, 50: 497-503.
[67] Ding S, Bhushan B. Tactile Perception of Skin and Skin Cream by Friction Induced Vibrations[J]. Journal of Colloid and Interface Science, 2016, 481: 131-143.
[68] Goldstein E B, Brockmole J. Sensation and Perception[M]. Cengage Learning, 2016.
[69] Mancini F, Bauleo A, Cole J, et al. Whole-body Mapping of Spatial Acuity for Pain and Touch[J]. Annals of Neurology, 2014, 75(6): 917-924. [70] Liu S, Ma K, Yang B, et al. Textile Electronics for VR/AR Applications[J]. Advanced Functional Materials, 2020: 2007254.
[71] Benko H, Holz C, Sinclair M, et al. Normaltouch and Texturetouch: High-fidelity 3d Haptic Shape Rendering on Handheld Virtual Reality Controllers[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016: 717-728.
[72] Liu Y, Norton J J, Qazi R, et al. Epidermal Mechano-acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-machine Interfaces[J]. Science Advances, 2016, 2(11): e1601185.
[73] Hawryluk E B, Liang M G. Pediatric Melanoma, Moles, and Sun Safety[J]. Pediatr Clin North Am, 2014, 61(2): 279-291.
[74] Choi I, Ofek E, Benko H, et al. Claw: A Multifunctional Handheld Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality[C]. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018: 1-13.
[75] Yang G, Ho H L, Chen W, et al. A Haptic Device Wearable on a Human Arm[C]. IEEE Conference on Robotics, Automation and Mechatronics, 2004., 2004: 243-247.
[76] Ryu S, Pyo D, Lim S-C, et al. Mechanical Vibration Influences the Perception of Electrovibration[J]. Scientific Reports, 2018, 8(1): 1-10.
[77] Kaczmarek K A, Webster J G, Bach-Y-Rita P, et al. Electrotactile and Vibrotactile Displays for Sensory Substitution Systems[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(1): 1-16.
[78] Do T N, Phan H, Nguyen T Q, et al. Miniature Soft Electromagnetic Actuators for Robotic Applications[J]. Advanced Functional Materials, 2018, 28(18): 1800244.
[79] Leroy E, Hinchet R, Shea H. Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics[J]. Advanced Materials, 2020, 32(36): 2002564.
[80] Dagdeviren C, Shi Y, Joe P, et al. Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics[J]. Nature Materials, 2015, 14(7): 728-736.
[81] Sonar H A, Paik J. Soft Pneumatic Actuator Skin with Piezoelectric Sensors for Vibrotactile Feedback[J]. Frontiers in Robotics and AI, 2016, 2: 38.
[82] Zhao H, Li Y, Elsamadisi A, et al. Scalable Manufacturing of High Force Wearable Soft Actuators[J]. Extreme Mechanics Letters, 2015, 3: 89-104. [83] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic Networks for Soft Robotics That Actuate Rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170.
[84] Wehner M, Truby R L, Fitzgerald D J, et al. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots[J]. Nature, 2016, 536(7617): 451-455.
[85] Pelrine R, Kornbluh R, Pei Q, et al. High-speed Electrically Actuated Elastomers with Strain Greater than 100%[J]. Science, 2000, 287(5454): 836-839.
[86] Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation[J]. Sensors and Actuators A: Physical, 1998, 64(1): 77-85.
[87] Poulin A, Rosset S, Shea H R. Printing Low-voltage Dielectric Elastomer Actuators[J]. Applied Physics Letters, 2015, 107(24): 244104. [88] Zhao H, Hussain A M, Duduta M, et al. Compact Dielectric Elastomer Linear Actuators[J]. Advanced Functional Materials, 2018, 28(42): 1804328. [89] Acome E, Mitchell S K, Morrissey T, et al. Hydraulically Amplified Self-healing Electrostatic Actuators with Muscle-like Performance[J]. Science, 2018, 359(6371): 61-65.
[90] Li S, Tu Y, Bai H, et al. Simple Synthesis of Elastomeric Photomechanical Switches That Selfheal[J]. Macromolecular Rapid Communications, 2019, 40(4): 1800815.
[91] Garstecki P, Tierno P, Weibel D B, et al. Propulsion of Flexible Polymer Structures In a Rotating Magnetic Field[J]. Journal of Physics: Condensed Matter, 2009, 21(20): 204110.
[92] Lu H, Zhang M, Yang Y, et al. A Bioinspired Multilegged Soft Millirobot That Functions in Both Dry and Wet Conditions[J]. Nature Communications, 2018, 9(1): 1-7.
[93] Guo C F, Chen Y, Tang L, et al. Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes[J]. Nano Letters, 2016, 16(1): 594- 600.
[94] Watts J F, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES[M]. John Wiley & Sons, 2019.
[95] Qaiser N, Al-Modaf F, Khan S M, et al. A Robust Wearable Point-of-care CNT-based Strain Sensor for Wirelessly Monitoring Throat-related Illnesses[J]. Advanced Functional Materials, 2021: 2103375.
[96] Li T, Luo H, Qin L, et al. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer[J]. Small, 2016, 12(36): 5042-5048.
[97] Liu Y, Wang W, Gu K, et al. Poly (vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems[J]. ACS Applied Materials & Interfaces, 2021.
[98] Qiu Z, Wan Y, Zhou W, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[99] Nie P, Wang R, Xu X, et al. High-performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14911-14919.
[100] Wei Y, Chen S, Lin Y, et al. Cu-Ag Core-shell Nanowires for Electronic Skin with a Petal Molded Microstructure[J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.
[101] Jian M, Xia K, Wang Q, et al. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures[J]. Advanced Functional Materials, 2017, 27(9): 1606066.
[102] Su B, Gong S, Ma Z, et al. Mimosa-inspired Design of a Flexible Pressure Sensor with Touch Sensitivity[J]. Small, 2015, 11(16): 1886-1891. [103] Wan Y, Qiu Z, Huang J, et al. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin[J]. Small, 2018, 14(35): 1801657.
[104] Boylestad R L, Nashelsky L. Electronic Devices and Circuit Theory[M]. Prentice Hall, 2012.
修改评论