中文版 | English
题名

基于触觉传感与触觉映射的人机交互系统

其他题名
HUMAN-COMPUTER INTERACTION SYSTEM BASED ON TACTILE PERCEPTION AND TACTILE FEEDBACK
姓名
姓名拼音
ZHANG Hongyuan
学号
11930255
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
张建明
导师单位
工学院;材料科学与工程系
外机构导师
易明军
外机构导师单位
深圳圣诺医疗设备股份有限公司
论文答辩日期
2021-11-11
论文提交日期
2021-12-10
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,柔性电子、人工智能、机器人技术迅速兴起促进了人机交互的发展。作为人机交互的两大重要领域,触觉传感和触觉反馈往往被孤立开来,鲜有研究将这两种技术有机融合为一体。本文开展了触觉传感与触觉映射的研究,并基于两者构建了人机交互系统,初步解决了上述问题。

本文研制了一种离子-电子型柔性压力传感器,该传感器采用聚乙烯醇和磷酸凝胶材料作为离子导电层,通过软光刻技术制备了非稳自填充结构,极大地提高了传感性能。其灵敏度极高,可以超过400 kPa-1;同时还具有响应时间短、循环稳定性好等性能。

本文还制备了振动反馈可穿戴设备。选用小型商用马达作为振动反馈可穿戴设备的驱动器,并嵌入到硅胶与涤纶织物中,制备了振动反馈可穿戴设备。

进一步地,实现了触觉传感器和振动反馈可穿戴设备的集成。通过在机械手表面贴附传感阵列,在受试者身上贴附振动反馈可穿戴设备,使用相应的信号传递电路,实现触觉传感器电容值与触觉反馈设备的振动频率一一对应,从而搭建了具备触觉传感与振动反馈映射功能的人机交互系统。本文展示了该系统的两个应用场景,受试者能根据振动反馈信号学习并识别出触觉信息。

本文创新性地结合了超高灵敏柔性压力传感器与振动反馈可穿戴设备,搭建了点对点、实时的、具备较高精度的人机交互系统,为人机交互系统的设计提供了一种切实可行的方案。该系统能够实现从机器触觉到人体触觉的映射,可帮助人体通过振动反馈感知机械手的触觉信息。

其他摘要

In recent years, the emerging of flexible electronics, artificial intelligence and robotics promotes the development of human-computer interaction. However, existing work focuses on either tactile sensing or tactile feedback, without connecting the two functions together. Here, the author and collaborators design a human-computer interaction system based on tactile sensing and tactile feedback, well addressing the aforementioned problem.

The flexible pressure sensor consists of two electrodes and an ionic layer. The ionic layer is a polyvinyl alcohol-phosphoric acid gel, of which the surface is duplicated from a unique sandpaper serving as the template. The device exhibits high sensitivity of >400 kPa-1, and also presents other excellent properties such as short response time and high cyclic stability.

The author further developed a vibration feedback device. A commercial motor is selected as the vibration feedback device in this study. A sensor array and a set of vibration feedback device are integrated with a circuit to build human-computer interaction system. We have demonstrated two possible applications. The subject volunteer involved in this study was able to judge tactile information according to the vibration feedback signals.

In summary, a real-time, point-by-point, and high-precision human-computer interaction system is demonstrated by combining an array of highly sensitivity flexible pressure sensors and a set of vibration feedback device. The system can respond to the signals captured by the flexible pressure sensor in real time, process the signal, and transfer the information as different vibration frequencies that can be recognized by the human skin. Such a system is expected to be used in artificial limbs to help the user recover tactile sensation.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2021
参考文献列表

[1] Johansson R S, Flanagan J R. Coding and Use of Tactile Signals from the Fingertips in Object Manipulation Tasks[J]. Nature Reviews Neuroscience, 2009, 10(5): 345-359.
[2] Ma Z, Li S, Wang H, et al. Advanced Electronic Skin Devices for Healthcare Applications[J]. Journal of Materials Chemistry B, 2019, 7(2): 173-197.
[3] 美国 《科学》杂志评出2000年十大科学成就[J],中国科技产业 2001(01): 57.
[4] Yang J C, Mun J, Kwon S Y, et al. Electronic Skin: Recent Progress and Future Prospects for Skin-attachable Devices for Health Monitoring, Robotics, and Prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765. [5] Kim D-H, Lu N, Ma R, et al. Epidermal Electronics[J]. Science, 2011, 333(6044): 838-843.
[6] Velliste M, Perel S, Spalding M C, et al. Cortical Control of a Prosthetic Arm for Self-feeding[J]. Nature, 2008, 453(7198): 1098-1101.
[7] Shintaku H, Nakagawa T, Kitagawa D, et al. Development of Piezoelectric Acoustic Sensor with Frequency Selectivity for Artificial Cochlea[J]. Sensors and Actuators A: Physical, 2010, 158(2): 183-192.
[8] Yang J, Liu Q, Deng Z, et al. Ionic Liquid-activated Wearable Electronics[J]. Materials Today Physics, 2019, 8: 78-85.
[9] Dargaville T R, Farrugia B L, Broadbent J A, et al. Sensors and Imaging for Wound Healing: a Review[J]. Biosensors and Bioelectronics, 2013, 41: 30-42.
[10] Hernández-Santos C, Davizón Y A, Said A R, et al. Development of a Wearable Finger Exoskeleton for Rehabilitation[J]. Applied Sciences, 2021, 11(9): 4145.
[11] Wan Y, Wang Y, Guo C F. Recent Progresses on Flexible Tactile Sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[12] Ji B, Zhou Q, Lei M, et al. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range[J]. Small, 2021, 17(43): 2103312.
[13] An B W, Heo S, Ji S, et al. Transparent and Flexible Fingerprint Sensor Array with Multiplexed Detection of Tactile Pressure and Skin Temperature[J]. Nature Communications, 2018, 9(1): 1- 10.
[14] Yoo J Y, Seo M H, Lee J S, et al. Industrial Grade, Bending-insensitive, Transparent Nanoforce Touch Sensor via Enhanced Percolation Effect in a Hierarchical Nanocomposite Film[J]. Advanced Functional Materials, 2018, 28(42): 1804721.
[15] Lipomi D J, Vosgueritchian M, Tee B C, et al. Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788- 792.
[16] Ho D H, Sun Q, Kim S Y, et al. Stretchable and Multimodal All Graphene Electronic Skin[J]. Advanced Materials, 2016, 28(13): 2601-2608. 
[17] Yang J C, Kim J-O, Oh J, et al. Microstructured Porous Pyramid-based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19472-19480.
[18] Hu W, Niu X, Zhao R, et al. Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane[J]. Applied Physics Letters, 2013, 102(8): 38.
[19] Choi J, Kwon D, Kim K, et al. Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler Toward High Performance Capacitive Pressure Sensors[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1698-1706.
[20] Lee J H, Heo J S, Kim Y J, et al. A Behavior-learned cross-reactive Sensor Matrix for Intelligent Skin Perception[J]. Advanced Materials, 2020, 32(22): 2000969.
[21] Zhong W, Liu C, Liu Q, et al. Ultrasensitive Wearable Pressure Sensors Assembled by Surfacepatterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42706-42714.
[22] Kim S, Amjadi M, Lee T-I, et al. Wearable, Ultrawide-range, and Bending-insensitive Pressure Sensor Based on Carbon Nanotube Network-coated Porous Elastomer Sponges for Human Interface and Healthcare Devices[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23639-23648. [23] Zhu B, Niu Z, Wang H, et al. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors[J]. Small, 2014, 10(18): 3625-3631. [24] Zhang Y-Z, El-Demellawi J K, Jiang Q, et al. MXene Hydrogels: Fundamentals and Applications[J]. Chemical Society Reviews, 2020, 49(20): 7229-7251.
25] Pyo S, Lee J-I, Kim M-O, et al. Development of a Flexible Three-axis Tactile Sensor Based on Screen-printed Carbon Nanotube-polymer Composite[J]. Journal of Micromechanics and Microengineering, 2014, 24(7): 075012.
[26] Han S, Liu C, Huang Z, et al. High-performance Pressure Sensors Based on 3D Microstructure Fabricated by a Facile Transfer Technology[J]. Advanced Materials Technologies, 2019, 4(5): 1800640.
[27] Pyo S, Lee J, Kim W, et al. Multi-layered, Hierarchical Fabric-based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range[J]. Advanced Functional Materials, 2019, 29(35): 1902484.
[28] Dai H, Thostenson E T. Large-area Carbon Nanotube-based Flexible Composites for Ultrawide Range Pressure Sensing and Spatial Pressure Mapping[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48370-48380.
[29] Gao Z Y, Zhou J, Gu Y D, et al. Effects of Piezoelectric Potential on the Transport Characteristics of Metal-ZnO Nanowire-metal Field Effect Transistor[J]. J Appl Phys, 2009, 105(11): 6.
[30] Yang T, Pan H, Tian G, et al. Hierarchically Structured PVDF/ZnO Core-shell Nanofibers for Self-powered Physiological Monitoring Electronics[J]. Nano Energy, 2020, 72: 104706. 
[31] Xie M, Zhang Y, Kraśny M J, et al. Flexible and Active Self-powered Pressure, Shear Sensors Based on Freeze Casting Ceramic-polymer Composites[J]. Energy & Environmental Science,, 2018, 11(10): 2919-2927.
[32] Kim M-O, Pyo S, Oh Y, et al. Flexible and Multi-directional Piezoelectric Energy Harvester for Self-powered Human Motion Sensor[J]. Smart Materials and Structures, 2018, 27(3): 035001.
[33] Fan F-R, Tian Z-Q, Wang Z L. Flexible Triboelectric Generator[J]. Nano Energy, 2012, 1(2): 328-334.
[34] Park S, Kim H, Vosgueritchian M, et al. Stretchable Energy-harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes[J]. Advanced Materials, 2014, 26(43): 7324-7332.
[35] Zhou K, Zhao Y, Sun X, et al. Ultra-stretchable Triboelectric Nanogenerator as High-sensitive and Self-powered Electronic Skins for Energy Harvesting and Tactile Sensing[J]. Nano Energy, 2020, 70: 104546. [36] Zhu X X, Meng X S, Kuang S Y, et al. Triboelectrification-enabled Touch Sensing for Selfpowered Position Mapping and Dynamic Tracking by a Flexible and Area-scalable Sensor Array[J]. Nano Energy, 2017, 41: 387-393.
[37] Pu X, Liu M, Chen X, et al. Ultrastretchable, Transparent Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Tactile Sensing[J]. Science Advances, 2017, 3(5): e1700015.
[38] Huang J, Yang X, Yu J, et al. A Universal and Arbitrary Tactile Interactive System Based on Self-powered Optical Communication[J]. Nano Energy, 2020, 69: 104419.
[39] Pyo S, Kim M-O, Kwon D-S, et al. All-textile Wearable Triboelectric Nanogenerator Using Pile-embroidered Fibers for Enhancing Output Power[J]. Smart Materials and Structures, 2020, 29(5): 055026.
[40] Nie B, Xing S, Brandt J D, et al. Droplet-based Interfacial Capacitive Sensing[J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[41] Nie B, Li R, Brandt J D, et al. Iontronic Microdroplet Array for Flexible Ultrasensitive Tactile Sensing[J]. Lab on a Chip, 2014, 14(6): 1107-1116. [42] Nie B, Li R, Brandt J D, et al. Microfluidic Tactile Sensors for Three-dimensional Contact Force Measurements[J]. Lab on a Chip, 2014, 14(22): 4344-4353.
[43] Sun J Y, Keplinger C, Whitesides G M, et al. Ionic Skin[J]. Advanced Materials, 2014, 26(45): 7608-7614.
[44] Gouy M. Sur la Constitution de la Charge électrique à la Surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910, 9(1): 457-468.
[45] P De Rooij M. Electrochemical Methods: Fundamentals and Applications[J]. Anti-Corrosion Methods and Materials, 2003.
[46] Chortos A, Liu J, Bao Z. Pursuing Prosthetic Electronic Skin[J]. Nature Materials, 2016, 15(9): 937-950. 
[47] Delmas P, Hao J, Rodat-Despoix L. Molecular Mechanisms of Mechanotransduction in Mammalian Sensory Neurons[J]. Nature Reviews Neuroscience, 2011, 12(3): 139-153.
[48] C. Craig J M K, James. Factors Affecting Tactile Spatial Acuity[J]. Somatosensory & Motor Research, 1998, 15(1): 29-45.
[49] Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers[J]. Nature Materials, 2010, 9(10): 859-864.
[50] Ha M, Lim S, Cho S, et al. Skin-inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-free, Ultrathin, and Highly Sensitive Triboelectric Sensors[J]. ACS Nano, 2018, 12(4): 3964-3974.
[51] Luo Y, Shao J, Chen S, et al. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17796-17803.
[52] Bai N, Wang L, Wang Q, et al. Graded Intrafillable Architecture-based Iontronic Pressure Sensor with Ultra-broad-range High Sensitivity[J]. Nature Communications, 2020, 11(1): 1-9.
[53] Wan Y, Qiu Z, Hong Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-aspect-ratio Microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[54] Choi Y W, Kang D, Pikhitsa P V, et al. Ultra-sensitive Pressure Sensor Based on Guided Straight Mechanical Cracks[J]. Scientific Reports, 2017, 7(1): 1-8.
[55] Lu P, Wang L, Zhu P, et al. Iontronic Pressure Sensor with High Sensitivity and Linear Response Over a Wide Pressure Range Based on Soft Micropillared Electrodes[J]. Science Bulletin, 2021, 66(11): 1091-1100. [56] Bae G Y, Pak S W, Kim D, et al. Linearly and Highly Pressure-sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array[J]. Advanced Materials, 2016, 28(26): 5300- 5306.
[57] Lee Y, Park J, Cho S, et al. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response Over Exceptionally Broad Pressure Range[J]. ACS Nano, 2018, 12(4): 4045-4054.
[58] Xu H, Gao L, Wang Y, et al. Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics[J]. Nano-micro Letters, 2020, 12(1): 1- 13.
[59] Guo Y, Zhong M, Fang Z, et al. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-range Human–machine Interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150.
[60] Wang K, Lou Z, Wang L, et al. Bioinspired Interlocked Structure-induced High Deformability for Two-dimensional Titanium Carbide (MXene)/Natural Microcapsule-based Flexible Pressure Sensors[J]. ACS nano, 2019, 13(8): 9139-9147.
[61] Cheng W, Yu L, Kong D, et al. Fast-response and Low-hysteresis Flexible Pressure Sensor Based on Silicon Nanowires[J]. IEEE Electron Device Letters, 2018, 39(7): 1069-1072.
[62] Kapoor S, Arora P, Kapoor V, et al. Haptics-Touchfeedback Technology Widening the Horizon of Medicine[J]. Journal of Clinical and Diagnostic Research: JCDR, 2014, 8(3): 294.
[63] Yu L, Parker S, Xuan H, et al. Flexible Multi-material Fibers for Distributed Pressure and Temperature Sensing[J]. Advanced Functional Materials, 2020, 30(9): 1908915.
[64] Feng Y, Liu H, Zhu W, et al. Muscle-Inspired MXene Conductive Hydrogels with Anisotropy and Low-temperature Tolerance for Wearable Flexible Sensors and Arrays[J]. Advanced Functional Materials, 2021: 2105264.
[65] Pyo S, Choi J, Kim J. Flexible, Transparent, Sensitive, and Crosstalk-free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric[J]. Advanced Electronic Materials, 2018, 4(1): 1700427.
[66] Zhu X X, Li Z B, Li X S, et al. Triboelectrification-enabled Thin-film Tactile Matrix for Selfpowered High-resolution Imaging[J]. Nano Energy, 2018, 50: 497-503.
[67] Ding S, Bhushan B. Tactile Perception of Skin and Skin Cream by Friction Induced Vibrations[J]. Journal of Colloid and Interface Science, 2016, 481: 131-143.
[68] Goldstein E B, Brockmole J. Sensation and Perception[M]. Cengage Learning, 2016.
[69] Mancini F, Bauleo A, Cole J, et al. Whole-body Mapping of Spatial Acuity for Pain and Touch[J]. Annals of Neurology, 2014, 75(6): 917-924. [70] Liu S, Ma K, Yang B, et al. Textile Electronics for VR/AR Applications[J]. Advanced Functional Materials, 2020: 2007254.
[71] Benko H, Holz C, Sinclair M, et al. Normaltouch and Texturetouch: High-fidelity 3d Haptic Shape Rendering on Handheld Virtual Reality Controllers[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016: 717-728.
[72] Liu Y, Norton J J, Qazi R, et al. Epidermal Mechano-acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-machine Interfaces[J]. Science Advances, 2016, 2(11): e1601185.
[73] Hawryluk E B, Liang M G. Pediatric Melanoma, Moles, and Sun Safety[J]. Pediatr Clin North Am, 2014, 61(2): 279-291.
[74] Choi I, Ofek E, Benko H, et al. Claw: A Multifunctional Handheld Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality[C]. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018: 1-13.
[75] Yang G, Ho H L, Chen W, et al. A Haptic Device Wearable on a Human Arm[C]. IEEE Conference on Robotics, Automation and Mechatronics, 2004., 2004: 243-247.
[76] Ryu S, Pyo D, Lim S-C, et al. Mechanical Vibration Influences the Perception of Electrovibration[J]. Scientific Reports, 2018, 8(1): 1-10.
[77] Kaczmarek K A, Webster J G, Bach-Y-Rita P, et al. Electrotactile and Vibrotactile Displays for Sensory Substitution Systems[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(1): 1-16.
[78] Do T N, Phan H, Nguyen T Q, et al. Miniature Soft Electromagnetic Actuators for Robotic Applications[J]. Advanced Functional Materials, 2018, 28(18): 1800244.
[79] Leroy E, Hinchet R, Shea H. Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics[J]. Advanced Materials, 2020, 32(36): 2002564.
[80] Dagdeviren C, Shi Y, Joe P, et al. Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics[J]. Nature Materials, 2015, 14(7): 728-736.
[81] Sonar H A, Paik J. Soft Pneumatic Actuator Skin with Piezoelectric Sensors for Vibrotactile Feedback[J]. Frontiers in Robotics and AI, 2016, 2: 38.
[82] Zhao H, Li Y, Elsamadisi A, et al. Scalable Manufacturing of High Force Wearable Soft Actuators[J]. Extreme Mechanics Letters, 2015, 3: 89-104. [83] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic Networks for Soft Robotics That Actuate Rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170.
[84] Wehner M, Truby R L, Fitzgerald D J, et al. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots[J]. Nature, 2016, 536(7617): 451-455.
[85] Pelrine R, Kornbluh R, Pei Q, et al. High-speed Electrically Actuated Elastomers with Strain Greater than 100%[J]. Science, 2000, 287(5454): 836-839.
[86] Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation[J]. Sensors and Actuators A: Physical, 1998, 64(1): 77-85.
[87] Poulin A, Rosset S, Shea H R. Printing Low-voltage Dielectric Elastomer Actuators[J]. Applied Physics Letters, 2015, 107(24): 244104. [88] Zhao H, Hussain A M, Duduta M, et al. Compact Dielectric Elastomer Linear Actuators[J]. Advanced Functional Materials, 2018, 28(42): 1804328. [89] Acome E, Mitchell S K, Morrissey T, et al. Hydraulically Amplified Self-healing Electrostatic Actuators with Muscle-like Performance[J]. Science, 2018, 359(6371): 61-65.
[90] Li S, Tu Y, Bai H, et al. Simple Synthesis of Elastomeric Photomechanical Switches That Selfheal[J]. Macromolecular Rapid Communications, 2019, 40(4): 1800815.
[91] Garstecki P, Tierno P, Weibel D B, et al. Propulsion of Flexible Polymer Structures In a Rotating Magnetic Field[J]. Journal of Physics: Condensed Matter, 2009, 21(20): 204110.
[92] Lu H, Zhang M, Yang Y, et al. A Bioinspired Multilegged Soft Millirobot That Functions in Both Dry and Wet Conditions[J]. Nature Communications, 2018, 9(1): 1-7.
[93] Guo C F, Chen Y, Tang L, et al. Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes[J]. Nano Letters, 2016, 16(1): 594- 600.
[94] Watts J F, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES[M]. John Wiley & Sons, 2019.
[95] Qaiser N, Al-Modaf F, Khan S M, et al. A Robust Wearable Point-of-care CNT-based Strain Sensor for Wirelessly Monitoring Throat-related Illnesses[J]. Advanced Functional Materials, 2021: 2103375.
[96] Li T, Luo H, Qin L, et al. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer[J]. Small, 2016, 12(36): 5042-5048.
[97] Liu Y, Wang W, Gu K, et al. Poly (vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems[J]. ACS Applied Materials & Interfaces, 2021.
[98] Qiu Z, Wan Y, Zhou W, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[99] Nie P, Wang R, Xu X, et al. High-performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14911-14919.
[100] Wei Y, Chen S, Lin Y, et al. Cu-Ag Core-shell Nanowires for Electronic Skin with a Petal Molded Microstructure[J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.
[101] Jian M, Xia K, Wang Q, et al. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures[J]. Advanced Functional Materials, 2017, 27(9): 1606066.
[102] Su B, Gong S, Ma Z, et al. Mimosa-inspired Design of a Flexible Pressure Sensor with Touch Sensitivity[J]. Small, 2015, 11(16): 1886-1891. [103] Wan Y, Qiu Z, Huang J, et al. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin[J]. Small, 2018, 14(35): 1801657.
[104] Boylestad R L, Nashelsky L. Electronic Devices and Circuit Theory[M]. Prentice Hall, 2012.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB383
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257623
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
张洪源. 基于触觉传感与触觉映射的人机交互系统[D]. 深圳. 南方科技大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930255-张洪源-材料科学与工程(8517KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张洪源]的文章
百度学术
百度学术中相似的文章
[张洪源]的文章
必应学术
必应学术中相似的文章
[张洪源]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。