中文版 | English
题名

Progressive Learning for Person Re-Identification With One Example

作者
通讯作者Yang, Yi
发表日期
2019-06
DOI
发表期刊
ISSN
1057-7149
EISSN
1941-0042
卷号28期号:6页码:2872-2881
摘要

In this paper, we focus on the one-example person re-identification (re-ID) task, where each identity has only one labeled example along with many unlabeled examples. We propose a progressive framework that gradually exploits the unlabeled data for person re-ID. In this framework, we iteratively: 1) update the convolutional neural network (CNN) model and (2) estimate pseudo labels for the unlabeled data. We split the training data into three parts, i.e., labeled data, pseudo-labeled data, and index-labeled data. Initially, the re-ID model is trained using the labeled data. For the subsequent model training, we update the CNN model by the joint training on the three data parts. The proposed joint training method can optimize the model by both the data with labels (or pseudo labels) and the data without any reliable labels. For the label estimation step, instead of using a static sampling strategy, we propose a progressive sampling strategy to increase the number of the selected pseudo-labeled candidates step by step. We select a few candidates with most reliable pseudo labels from unlabeled examples as the pseudo-labeled data, and keep the rest as index-labeled data by assigning them with the data indexes. During iterations, the index-labeled data are dynamically transferred to pseudo-labeled data. Notably, the rank-1 accuracy of our method outperforms the state-of-the-art method by 21.6 points (absolute, i.e., 62.8% versus 41.2%) on MARS, and 16.6 points on DukeMTMC-VideoReID. Extended to the few-example setting, our approach with only 20% labeled data surprisingly achieves comparable performance to the supervised state-of-the-art method with 100% labeled data.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
ESI高被引
学校署名
第一 ; 通讯
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000464920200001
出版者
EI入藏号
20191706829961
EI主题词
Machine Learning ; Neural Networks ; Supervised Learning
EI分类号
Numerical Methods:921.6
ESI学科分类
ENGINEERING
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8607049
引用统计
被引频次[WOS]:162
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25779
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, SUSTech UTS Joint Ctr CIS, Shenzhen 518055, Peoples R China
2.Univ Technol Sydney, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wu, Yu,Lin, Yutian,Dong, Xuanyi,et al. Progressive Learning for Person Re-Identification With One Example[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(6):2872-2881.
APA
Wu, Yu,Lin, Yutian,Dong, Xuanyi,Yan, Yan,Bian, Wei,&Yang, Yi.(2019).Progressive Learning for Person Re-Identification With One Example.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(6),2872-2881.
MLA
Wu, Yu,et al."Progressive Learning for Person Re-Identification With One Example".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.6(2019):2872-2881.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu, Yu]的文章
[Lin, Yutian]的文章
[Dong, Xuanyi]的文章
百度学术
百度学术中相似的文章
[Wu, Yu]的文章
[Lin, Yutian]的文章
[Dong, Xuanyi]的文章
必应学术
必应学术中相似的文章
[Wu, Yu]的文章
[Lin, Yutian]的文章
[Dong, Xuanyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。