题名 | Accelerating multi-objective neural architecture search by random-weight evaluation |
作者 | |
通讯作者 | Cheng, Ran |
发表日期 | 2021-12-01
|
DOI | |
发表期刊 | |
ISSN | 2199-4536
|
EISSN | 2198-6053
|
卷号 | 9期号:2 |
摘要 | For the goal of automated design of high-performance deep convolutional neural networks (CNNs), neural architecture search (NAS) methodology is becoming increasingly important for both academia and industries. Due to the costly stochastic gradient descent training of CNNs for performance evaluation, most existing NAS methods are computationally expensive for real-world deployments. To address this issue, we first introduce a new performance estimation metric, named random-weight evaluation (RWE) to quantify the quality of CNNs in a cost-efficient manner. Instead of fully training the entire CNN, the RWE only trains its last layer and leaves the remainders with randomly initialized weights, which results in a single network evaluation in seconds. Second, a complexity metric is adopted for multi-objective NAS to balance the model size and performance. Overall, our proposed method obtains a set of efficient models with state-of-the-art performance in two real-world search spaces. Then the results obtained on the CIFAR-10 dataset are transferred to the ImageNet dataset to validate the practicality of the proposed algorithm. Moreover, ablation studies on NAS-Bench-301 datasets reveal the effectiveness of the proposed RWE in estimating the performance compared to existing methods. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[61903178,61906081,"U20A20306"]
; Shenzhen Science and Technology Program[RCBS20200714114817264]
; Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000726263100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257831 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Key Lab Brain Inspired Intelligent Comp, Shenzhen 518055, Peoples R China 2.Shanghai Aircraft Design & Res Inst, Shanghai 200135, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hu, Shengran,Cheng, Ran,He, Cheng,et al. Accelerating multi-objective neural architecture search by random-weight evaluation[J]. Complex & Intelligent Systems,2021,9(2).
|
APA |
Hu, Shengran,Cheng, Ran,He, Cheng,Lu, Zhichao,Wang, Jing,&Zhang, Miao.(2021).Accelerating multi-objective neural architecture search by random-weight evaluation.Complex & Intelligent Systems,9(2).
|
MLA |
Hu, Shengran,et al."Accelerating multi-objective neural architecture search by random-weight evaluation".Complex & Intelligent Systems 9.2(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论