中文版 | English
题名

Accelerating multi-objective neural architecture search by random-weight evaluation

作者
通讯作者Cheng, Ran
发表日期
2021-12-01
DOI
发表期刊
ISSN
2199-4536
EISSN
2198-6053
卷号9期号:2
摘要
For the goal of automated design of high-performance deep convolutional neural networks (CNNs), neural architecture search (NAS) methodology is becoming increasingly important for both academia and industries. Due to the costly stochastic gradient descent training of CNNs for performance evaluation, most existing NAS methods are computationally expensive for real-world deployments. To address this issue, we first introduce a new performance estimation metric, named random-weight evaluation (RWE) to quantify the quality of CNNs in a cost-efficient manner. Instead of fully training the entire CNN, the RWE only trains its last layer and leaves the remainders with randomly initialized weights, which results in a single network evaluation in seconds. Second, a complexity metric is adopted for multi-objective NAS to balance the model size and performance. Overall, our proposed method obtains a set of efficient models with state-of-the-art performance in two real-world search spaces. Then the results obtained on the CIFAR-10 dataset are transferred to the ImageNet dataset to validate the practicality of the proposed algorithm. Moreover, ablation studies on NAS-Bench-301 datasets reveal the effectiveness of the proposed RWE in estimating the performance compared to existing methods.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61903178,61906081,"U20A20306"] ; Shenzhen Science and Technology Program[RCBS20200714114817264] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000726263100001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/257831
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Key Lab Brain Inspired Intelligent Comp, Shenzhen 518055, Peoples R China
2.Shanghai Aircraft Design & Res Inst, Shanghai 200135, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hu, Shengran,Cheng, Ran,He, Cheng,et al. Accelerating multi-objective neural architecture search by random-weight evaluation[J]. Complex & Intelligent Systems,2021,9(2).
APA
Hu, Shengran,Cheng, Ran,He, Cheng,Lu, Zhichao,Wang, Jing,&Zhang, Miao.(2021).Accelerating multi-objective neural architecture search by random-weight evaluation.Complex & Intelligent Systems,9(2).
MLA
Hu, Shengran,et al."Accelerating multi-objective neural architecture search by random-weight evaluation".Complex & Intelligent Systems 9.2(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu, Shengran]的文章
[Cheng, Ran]的文章
[He, Cheng]的文章
百度学术
百度学术中相似的文章
[Hu, Shengran]的文章
[Cheng, Ran]的文章
[He, Cheng]的文章
必应学术
必应学术中相似的文章
[Hu, Shengran]的文章
[Cheng, Ran]的文章
[He, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。