题名 | Implementation of home energy management system based on reinforcement learning |
作者 | |
通讯作者 | Jia,Youwei |
发表日期 | 2022-04-01
|
DOI | |
发表期刊 | |
EISSN | 2352-4847
|
卷号 | 8页码:560-566 |
摘要 | The implementation of machine learning methods in home energy management have been shown to be a feasible alternative in the minimization of electricity cost. These methods regulate the home electric appliance systems, which contribute to the most critical loads in a household, thus enabling consumers to save electricity while still enhancing their comfort. Furthermore, renewable energy supplies are continuously integrating with other electricity resources in number of homes that is an important component to optimize energy consumption which result in the reduction of peak load and can bring economic benefits. In this paper, a reinforcement learning algorithm is explored for monitoring household electric appliances with the intention of lowering energy consumption through properly optimizing and addressing the best use renewable energy resources. The proposed method does not necessitate any previous information or knowledge of the uncertain dynamics and parameters of different household electric appliances. Simulation-based findings using real-time data validate the efficiency and reliability of the proposed method. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20214911283561
|
EI主题词 | Costs
; Digital storage
; Electric energy storage
; Energy management
; Energy management systems
; Energy utilization
; Learning algorithms
; Renewable energy resources
; Uncertainty analysis
|
EI分类号 | Energy Management and Conversion:525
; Energy Resources and Renewable Energy Issues:525.1
; Energy Utilization:525.3
; Electric Transmission and Distribution:706
; Data Storage, Equipment and Techniques:722.1
; Artificial Intelligence:723.4
; Machine Learning:723.4.2
; Cost and Value Engineering; Industrial Economics:911
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85120502086
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/257841 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.Department of Electrical and Computer Engineering,Air University,Islamabad,Pakistan |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Haq,Ejaz Ul,Lyu,Cheng,Xie,Peng,et al. Implementation of home energy management system based on reinforcement learning[J]. Energy Reports,2022,8:560-566.
|
APA |
Haq,Ejaz Ul,Lyu,Cheng,Xie,Peng,Yan,Shuo,Ahmad,Fiaz,&Jia,Youwei.(2022).Implementation of home energy management system based on reinforcement learning.Energy Reports,8,560-566.
|
MLA |
Haq,Ejaz Ul,et al."Implementation of home energy management system based on reinforcement learning".Energy Reports 8(2022):560-566.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
energy reprot.pdf(1419KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论