中文版 | English
题名

Reliability-driven neural network training for memristive crossbar-based neuromorphic computing systems

作者
发表日期
2020
ISSN
0271-4310
会议录名称
卷号
2020-October
摘要
In recent years, memristive crossbar-based neuromorphic computing systems (NCS) have provided a promising solution to the acceleration of neural networks. However, stuck-at faults (SAFs) in the memristor devices significantly degrade the computing accuracy of NCS. Besides, the memristor suffers from the process variations, causing deviation of the actual programming resistance from its target resistance. In this paper, we propose a reliability-driven network training framework for a memristive crossbar-based NCS, with taking account of both SAFs and device variations challenges. A dropout-inspired approach is first developed to alleviate the impact of SAFs. A new weighted error function, including cross-entropy error (CEE), the l-norm of weights, and the sum of squares of first-order derivatives of CEE with respect to weights, is further proposed to obtain a smooth error curve, where the effects of variations are suppressed. Experimental results show that the proposed method can boost the computation accuracy of NCS and improve the NCS robustness.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212810618761
EI主题词
Errors ; Memristors
EI分类号
Semiconductor Devices and Integrated Circuits:714.2
Scopus记录号
2-s2.0-85109268438
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258027
专题工学院_计算机科学与工程系
工学院_深港微电子学院
作者单位
1.School of Microelectronics,University of Science and Technology of China,USTC Beijing Research Institute,Beijing,China
2.Department of Electronic Science and Technology,Hefei University of Technology,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,China
4.Department of Computer Science and Engineering,The Chinese University of Hong Kong,Hong Kong
推荐引用方式
GB/T 7714
Wang,Junpeng,Xu,Qi,Yuan,Bo,et al. Reliability-driven neural network training for memristive crossbar-based neuromorphic computing systems[C],2020.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Junpeng]的文章
[Xu,Qi]的文章
[Yuan,Bo]的文章
百度学术
百度学术中相似的文章
[Wang,Junpeng]的文章
[Xu,Qi]的文章
[Yuan,Bo]的文章
必应学术
必应学术中相似的文章
[Wang,Junpeng]的文章
[Xu,Qi]的文章
[Yuan,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。