中文版 | English
题名

DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum

作者
通讯作者Chen, Xiaofei
发表日期
2021-12-01
DOI
发表期刊
ISSN
0037-1106
EISSN
1943-3573
卷号111期号:6页码:3420-3431
摘要
The subsurface shear-wave structure primarily determines the characteristics of the surface-wave dispersion curve theoretically and observationally. Therefore, surface-wave dispersion curve inversion is extensively applied in imaging subsurface shear-wave velocity structures. The frequency-Bessel transform method can effectively extract dispersion spectra of high quality from both ambient seismic noise data and earthquake events data. However, manual picking and semiautomatic methods for dispersion curves lack a unified criterion, which impacts the results of inversion and imaging. In addition, conventional methods are insufficiently efficient; more precisely, a large amount of time is required for curve extraction from vast dispersion spectra, especially in practical applications. Thus, we propose DisperNet, a neural network system, to extract and discriminate the different modes of the dispersion curve. DisperNet consists of two parts: a supervised network for dispersion curve extraction and an unsupervised method for dispersion curve classification. Dispersion spectra from ambient noise and earthquake events are applied in training and validation. A field data test and transfer learning test show that DisperNet can stably and efficiently extract dispersion curves. The results indicate that DisperNet can significantly improve multimode surface-wave imaging.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855] ; Leading Talents of Guangdong Province Program[2016LJ06N652] ; National Natural Science Foundation of China[41790465,41974044,"U1901602"] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0203] ; Shenzhen Science and Technology Program[KQTD20170810111725321]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000722815800006
出版者
EI入藏号
20214811253022
EI主题词
Data mining ; Earthquakes ; Extraction ; Shear flow ; Shear waves ; Surface waves ; Wave propagation
EI分类号
Seismology:484 ; Fluid Flow, General:631.1 ; Data Processing and Image Processing:723.2 ; Chemical Operations:802.3 ; Mechanics:931.1
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258044
专题理学院_地球与空间科学系
前沿与交叉科学研究院
作者单位
1.Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China
2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
推荐引用方式
GB/T 7714
Dong, Sheng,Li, Zhengbo,Chen, Xiaofei,et al. DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum[J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA,2021,111(6):3420-3431.
APA
Dong, Sheng,Li, Zhengbo,Chen, Xiaofei,&Fu, Lei.(2021).DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum.BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA,111(6),3420-3431.
MLA
Dong, Sheng,et al."DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum".BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 111.6(2021):3420-3431.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dong, Sheng]的文章
[Li, Zhengbo]的文章
[Chen, Xiaofei]的文章
百度学术
百度学术中相似的文章
[Dong, Sheng]的文章
[Li, Zhengbo]的文章
[Chen, Xiaofei]的文章
必应学术
必应学术中相似的文章
[Dong, Sheng]的文章
[Li, Zhengbo]的文章
[Chen, Xiaofei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。