题名 | DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum |
作者 | |
通讯作者 | Chen, Xiaofei |
发表日期 | 2021-12-01
|
DOI | |
发表期刊 | |
ISSN | 0037-1106
|
EISSN | 1943-3573
|
卷号 | 111期号:6页码:3420-3431 |
摘要 | The subsurface shear-wave structure primarily determines the characteristics of the surface-wave dispersion curve theoretically and observationally. Therefore, surface-wave dispersion curve inversion is extensively applied in imaging subsurface shear-wave velocity structures. The frequency-Bessel transform method can effectively extract dispersion spectra of high quality from both ambient seismic noise data and earthquake events data. However, manual picking and semiautomatic methods for dispersion curves lack a unified criterion, which impacts the results of inversion and imaging. In addition, conventional methods are insufficiently efficient; more precisely, a large amount of time is required for curve extraction from vast dispersion spectra, especially in practical applications. Thus, we propose DisperNet, a neural network system, to extract and discriminate the different modes of the dispersion curve. DisperNet consists of two parts: a supervised network for dispersion curve extraction and an unsupervised method for dispersion curve classification. Dispersion spectra from ambient noise and earthquake events are applied in training and validation. A field data test and transfer learning test show that DisperNet can stably and efficiently extract dispersion curves. The results indicate that DisperNet can significantly improve multimode surface-wave imaging. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855]
; Leading Talents of Guangdong Province Program[2016LJ06N652]
; National Natural Science Foundation of China[41790465,41974044,"U1901602"]
; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0203]
; Shenzhen Science and Technology Program[KQTD20170810111725321]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:000722815800006
|
出版者 | |
EI入藏号 | 20214811253022
|
EI主题词 | Data mining
; Earthquakes
; Extraction
; Shear flow
; Shear waves
; Surface waves
; Wave propagation
|
EI分类号 | Seismology:484
; Fluid Flow, General:631.1
; Data Processing and Image Processing:723.2
; Chemical Operations:802.3
; Mechanics:931.1
|
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:20
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/258044 |
专题 | 理学院_地球与空间科学系 前沿与交叉科学研究院 |
作者单位 | 1.Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China 2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China 3.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen, Peoples R China 4.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen, Peoples R China |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Dong, Sheng,Li, Zhengbo,Chen, Xiaofei,et al. DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum[J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA,2021,111(6):3420-3431.
|
APA |
Dong, Sheng,Li, Zhengbo,Chen, Xiaofei,&Fu, Lei.(2021).DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum.BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA,111(6),3420-3431.
|
MLA |
Dong, Sheng,et al."DisperNet: An Effective Method of Extracting and Classifying the Dispersion Curves in the Frequency-Bessel Dispersion Spectrum".BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 111.6(2021):3420-3431.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论